精英家教网 > 初中数学 > 题目详情

【题目】已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;

(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒
个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.

【答案】
(1)解:将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,

,解得:

∴抛物线的解析式为y= x2 x.


(2)证明:设直线AF的解析式为y=kx+m,

将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,

∴k=m﹣1,

∴直线AF的解析式为y=(m﹣1)x+m.

联立直线AF和抛物线解析式成方程组,

,解得:

∴点G的坐标为(2m,2m2﹣m).

∵GH⊥x轴,

∴点H的坐标为(2m,0).

∵抛物线的解析式为y= x2 x= x(x﹣1),

∴点E的坐标为(1,0).

设直线AE的解析式为y=k1x+b1

将A(﹣1,1)、E(1,0)代入y=k1x+b1中,

,解得:

∴直线AE的解析式为y=﹣ x+

设直线FH的解析式为y=k2x+b2

将F(0,m)、H(2m,0)代入y=k2x+b2中,

,解得:

∴直线FH的解析式为y=﹣ x+m.

∴FH∥AE.


(3)设直线AB的解析式为y=k0x+b0

将A(﹣1,1)、B(4,6)代入y=k0x+b0中,

,解得:

∴直线AB的解析式为y=x+2.

当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).

当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.

∵QM=2PM,

= =

∴QM′= ,MM′= t,

∴点M的坐标为(t﹣ t).

又∵点M在抛物线y= x2 x上,

t= ×(t﹣ 2 (t﹣ ),

解得:t=

当点M在线段QP的延长线上时,

同理可得出点M的坐标为(t﹣4,2t),

∵点M在抛物线y= x2 x上,

∴2t= ×(t﹣4)2 (t﹣4),

解得:t=

综上所述:当运动时间为 秒、 秒、 秒或 秒时,QM=2PM.


【解析】(1)利用待定系数法把A、B坐标代入解析式即可;(2)要证坐标系中的两直线平行,可求两直线的解析式,斜率k相等,两直线平行,常数b可不必求出;(3)须动手画出点M与线段PQ的两种相对位置,分类讨论,斜线段QM与PM的比,通过作垂线,转化为x轴上水平线段的比,构建方程,求出t.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.
(1)求证:△BCE≌△DCF;
(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点内一点.

1)如图1,连接,将沿射线方向平移,得到,点的对应点分别为点,连接.如果,则

2)如图2,连接,当时,求的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=x+m (m为常数)的图像与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B.

(1)求m的值及抛物线的函数表达式;
(2)若P是抛物线对称轴上一动点,△ACP周长最小时,求出P的坐标;
(3)是否存在抛物在线一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若不存在,请说明理由;
(4)在(2)的条件下过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请直接写出结果,如果不是请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料I:

教材中我们学习了:若关于的一元二次方程的两根为,根据这一性质,我们可以求出己知方程关于的代数式的值.

问题解决:

1)已知为方程的两根,则: __ ___ _,那么_ (请你完成以上的填空)

阅读材料:II

已知,且.求的值.

:可知

,即

是方程的两根.

问题解决:

2)若

3)已知.求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y的图象经过点(﹣32).

1)求它的解析式;

2)在直角坐标中画出该反比例函数的图象;

3)若﹣3x<﹣2,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+ x+2与x轴交于点A,B,与y轴交于点C.

(1)试求A,B,C的坐标;
(2)将△ABC绕AB中点M旋转180°,得到△BAD.
①求点D的坐标;
②判断四边形ADBC的形状,并说明理由;
(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,BPO=45°,试判断此车是否超过了每小时80千米的限制速度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明就市电视台的各节目所受欢迎的情况,对本班50名同学进行了一次调查,结果如下:

最受学生欢迎的电视节目

节目

人数

体育

18

新闻

16

综艺

8

动画

5

其他

3

(1)选用适当的统计图描述上表数据;

(2)还能用其他统计图描述吗?

查看答案和解析>>

同步练习册答案