精英家教网 > 初中数学 > 题目详情
如图,点D、E、F分别是△ABC三边AB、BC、AC的中点,则△DEF的周长是△ABC周长的(  )
分析:根据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.
解答:解:∵D、E、F分别是AB、BC、AC的中点,
∴ED、FE、DF为△ABC中位线,
∴DF=
1
2
BC,FE=
1
2
AB,DE=
1
2
AC;
∴DF+FE+DE=
1
2
BC+
1
2
AB+
1
2
AC=
1
2
(AB+BC+CA);
即△DEF是△ABC的周长的
1
2

故选A.
点评:本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点D,E,F分别是△ABC(AB>AC)各边的中点,下列说法中,错误的是(  )
A、EF与AD互相平分
B、EF=
1
2
BC
C、AD平分∠BAC
D、△DEF∽△ACB

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点D,E,F分别是△ABC(AB>AC)各边的中点,下列说法中,错误的是(  )
A、AD平分∠BAC
B、EF=
1
2
BC
C、EF与AD互相平分
D、△DFE是△ABC的位似图形

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,点D、E、F分别是△ABC的边AB、BC、AC的中点,连接DE、EF,要使四边形ADEF为正方形,还需增加条件:
△ABC为等腰直角三角形,且AB=AC,∠A=90°(此题答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点D,E,F分别是△ABC的三边AB,AC,BC上的中点,如果△ABC的面积是18cm2,则△DBF的面积是
 
cm2

查看答案和解析>>

同步练习册答案