(1)证明:连接OE,
∵AB=BC且D是AC中点,
∴BD⊥AC,
∵BE平分∠ABD,
∴∠ABE=∠DBE,
∵OB=OE
∴∠OBE=∠OEB,
∴∠OEB=∠DBE,
∴OE∥BD,
∵BD⊥AC,
∴OE⊥AC,
∵OE为⊙O半径,
∴AC与⊙O相切.
(2)解:∵BD=6,sinC=
,BD⊥AC,
∴BC=10,
∴AB=BC=10,
设⊙O 的半径为r,则AO=10-r,
∵AB=BC,
∴∠C=∠A,
∴sinA=sinC=
,
∵AC与⊙O相切于点E,
∴OE⊥AC,
∴sinA=
=
=
,
∴r=
,
答:⊙O的半径是
…
分析:(1)连接OE,根据等腰三角形性质求出BD⊥AC,推出∠ABE=∠DBE和∠OBE=∠OEB,得出∠OEB=∠DBE,推出OE∥BD,得出OE⊥AC,根据切线的判定定理推出即可;
(2)根据sinC=
求出AB=BC=10,设⊙O 的半径为r,则AO=10-r,得出sinA=sinC=
,根据OE⊥AC,得出sinA=
=
=
,即可求出半径.
点评:本题考查了平行线的性质和判定,等腰三角形的性质和判定,解直角三角形,切线的性质和判定的应用,解(1)小题的关键是求出OE∥BD,解(2)小题的关键是得出关于r的方程,题型较好,难度适中,用了方程思想.