精英家教网 > 初中数学 > 题目详情
19.已知:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
(1)求证:AD=BE;
(2)求∠AEB的度数;
(3)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.
①∠AEB的度数为90°;
②探索线段CM、AE、BE之间的数量关系为AE=BE+2CM.(直接写出答案,不需要说明理由)

分析 (1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;
(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;
(3)①首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;②根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.

解答 解:(1)如图1,∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=∠BCE.
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS),
∴AD=BE;

(2)如图1,∵△ACD≌△BCE,
∴∠ADC=∠BEC,
∵△DCE为等边三角形,
∴∠CDE=∠CED=60°,
∵点A,D,E在同一直线上,
∴∠ADC=120°,
∴∠BEC=120°,
∴∠AEB=∠BEC-∠CED=60°;

(3)①如图2,∵△ACB和△DCE均为等腰直角三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,
∴∠ACB-∠DCB=∠DCE-∠DCB,
即∠ACD=∠BCE,
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS),
∴BE=AD,∠BEC=∠ADC,
∵点A,D,E在同一直线上,
∴∠ADC=180-45=135°,
∴∠BEC=135°,
∴∠AEB=∠BEC-∠CED=135°-45°=90°,
故答案为:90;

②如图2,∵∠DCE=90°,CD=CE,CM⊥DE,
∴CM=DM=EM,
∴DE=DM+EM=2CM,
∵△ACD≌△BCE(已证),
∴BE=AD,
∴AE=AD+DE=BE+2CM,
故答案为:AE=BE+2CM.

点评 本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.计算:$\sqrt{2}$cos45°-tan60°+sin30°-$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.先用甲、乙两种运输车将抗灾物资运往灾区,甲种运输车载重量5吨,乙种运输车载重量4吨,且乙种车比甲种车多安排2辆.
(1)若可安排甲、乙两种车合计不超过10辆,则甲种车最多能安排几辆?
(2)若需将46吨救灾物资运往灾区,则甲种车至少安排几辆?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在圆内接四边形ABCD中,∠A=52.5°,∠B=97.5°,∠AOB=120°(O为圆心),AB=a,BC=b,CD=c,DA=d,用a、b、c、d表示四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)因式分解:a3-2a2+a;
(2)因式分解:(3x+y)2-(x-3y)2
(3)解方程:$\frac{2x}{x-2}$=1-$\frac{1}{2-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.函数 y=ax2+a与 y=$\frac{a}{x}$( a≠0)在同一坐标系中的图象可能是图中的(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.
(1)求证:△BDE∽△CFD;
(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;
(3)当△AOF是等腰三角形时,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图在△ABC的边AB,AC的外侧分别作等边△ABC和等边△ACE,连接DC,BE,
(1)求证:DC=BE;
(2)若AB=3,BC=4,BE=5,请求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图所示,在△ABC中,D、E分别为BC、AC边上的中点,AD、BE相交于点G,若S△GDE=1,求S△ABC

查看答案和解析>>

同步练习册答案