【题目】如图,点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE于D,连结AC.
(1)求证:AC平分∠BAD.
(2)若tan∠CAD=,AD=8,求⊙O直径AB的长.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)连接OC,由DE为圆O的切线,得到OC垂直于CD,再由AD垂直于DE,得到AD与OC平行,得到一对内错角相等,根据OA=OC,利用等边对等角得到一对角相等,等量代换即可得证;
(2)在直角三角形ADC中,利用锐角三角函数定义求出CD的长,根据勾股定理求出AD的长,由三角形ACD与三角形ABC相似,得到对应边成比例,即可求出AB的长.
试题解析:(1)连结OC,
∵DE是⊙O的切线,
∴OC⊥DE,
∵AD⊥CE,
∴AD∥OC,
∵OA=OC,
∴∠DAC=∠ACO=∠CAO,
∴AC平分∠BAD;
(2)∵AD⊥CE,tan∠CAD=,AD=8,
∴CD=6,
∴AC=10,
∵AB是⊙O的直径,
∴∠ACB=90°=∠D,
∵∠DAC=∠CAO,
∴△ACD∽△ABC,
∴AB:AC=AC:AD,
∴AB=.
科目:初中数学 来源: 题型:
【题目】计算:
(1)2a﹣(3b﹣a)+b
(2)5a﹣6(a﹣ )+2(﹣ +3a)
(3)﹣(﹣6a)﹣a3+a2+5a3﹣a2﹣6a﹣8
(4)3(x2﹣y2)+(y2﹣z2)﹣2(z2﹣y2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120)。已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.
(1) 当速度为50km/h、100km/h时,该汽车的耗油量分别为_____L/km、____L/km.
(2) 求线段AB所表示的y与x之间的函数表达式
(3) 速度是多少时,该汽车的耗油量最低?最低是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据给出的数轴及已知条件,解答下面的问题:
(1)已知点A,B,C表示的数分别为1,﹣ ,﹣3观察数轴,与点A的距离为3的点表示的数是 , B,C两点之间的距离为;
(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M , N;
(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P , Q(用含m,n的式子表示这两个数).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com