【题目】如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:
(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.
(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求+的值;
(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.
【答案】(1)x1=3,x2=1;(2)-47或2;(3)方程x2+x+=0的两个根分别是已知方程两根的倒数
【解析】
(1)根据p=-4,q=3,得出方程x2-4x+3=0,再求解即可;
(2)根据a、b满足a2-15a-5=0,b2-15b-5=0,得出a,b是x2-15x-5=0的解,求出a+b和ab的值,即可求出+的值;
(3)先设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,得出,,再根据这个一元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.
(1)当p=﹣4,q=3,则方程为x2﹣4x+3=0,
解得:x1=3,x2=1
(2)∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,
∴a、b是x2﹣15x﹣5=0的解,
当a≠b时,a+b=15,ab=﹣5,
;
当a=b时,原式=2.
(3)设方程x2+mx+n=0,(n≠0),的两个根分别是x1,x2,
则,,
则方程x2+x+=0的两个根分别是已知方程两根的倒数
科目:初中数学 来源: 题型:
【题目】如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠B=45°,则隧道开通后,汽车从A地到B地比原来少走千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)
(1)作出△ABC绕点A顺时针方向旋转90°后得到的△A1B1C1,并写出C1点的坐标 ;
(2)作出△ABC关于原点O成中心对称的△A2B2C2,并求出△ABC的面积 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.
(1)求A、B两款羽绒服在网上的售价分别是多少元?
(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.
(1)求每个篮球和每个排球的销售利润;
(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的学习材料(研学问题),尝试解决问题:
(a)某学习小组在学习时遇到如下问题:如图①,在Rt△ABC中,∠C=90°,D为边BC上一点,DA=DB,E为AD延长线上一点,∠AEB=120°,猜想BC、EA、EB的数量关系,并证明结论.大家经探究发现:过点B作BF⊥AE交AE的延长线于F,如图②所示,构造全等三角形使问题容易求解,请写出解答过程.
(b)参考上述思考问题的方法,解答下列问题:
如图③,等腰△ABC中,AB=AC,H为AC上一点,在BC的延长线上顺次取点E、F,在CB的延长线上取点BD,使EF=DB,过点E作EG∥AC交DH的延长线于点G,连接AF,若∠HDF+∠F=∠BAC.
(1)探究∠BAF与∠CHG的数量关系;
(2)请在图中找出一条和线段AF相等的线段,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com