【题目】阅读下面的学习材料(研学问题),尝试解决问题:
(a)某学习小组在学习时遇到如下问题:如图①,在Rt△ABC中,∠C=90°,D为边BC上一点,DA=DB,E为AD延长线上一点,∠AEB=120°,猜想BC、EA、EB的数量关系,并证明结论.大家经探究发现:过点B作BF⊥AE交AE的延长线于F,如图②所示,构造全等三角形使问题容易求解,请写出解答过程.
(b)参考上述思考问题的方法,解答下列问题:
如图③,等腰△ABC中,AB=AC,H为AC上一点,在BC的延长线上顺次取点E、F,在CB的延长线上取点BD,使EF=DB,过点E作EG∥AC交DH的延长线于点G,连接AF,若∠HDF+∠F=∠BAC.
(1)探究∠BAF与∠CHG的数量关系;
(2)请在图中找出一条和线段AF相等的线段,并证明你的结论.
【答案】(a)BC=AE+BE.证明见解析;(b)(1)∠CHG=∠BAF;(2)AF=DG,证明见解析.
【解析】
(a)如图②中,结论:BC=AE+BE.理由如下,只要证明△BAF≌△ABC,推出BC=AF,再证明EF=BE,可得BC=AF=AE+EF=AE+BE;
(b)(1)由∠F+∠FDG=∠BAC,推出∠CHG=∠FDG+∠DCH=∠FDG+∠F+∠CAF=∠BAC+∠CAF=∠BAF;
(2)结论:AF=DG.如图③中,延长BD到R,使得BR=CF,连接AR,作AJ∥CF交EG的延长线于J.首先证明四边形ACEJ,四边形AJDR是平行四边形,再证明△ABF≌△JED,想办法证明∠1=∠2,即可解决问题.
解:(a)如图②中,结论:BC=AE+BE.理由如下,
∵DA=DB,
∴∠DBA=∠DAB,
∵AF⊥BF,
∴∠F=∠C=90°,
在△BAF和△ABC中, ,
∴△BAF≌△ABC(AAS),
∴BC=AF,
∵∠AEB=120°=∠F+∠FBE,
∴∠FBE=30°,
∴EF=BE,
∴BC=AF=AE+EF=AE+BE,
∴BC=AE+BE;
(b)(1)如图③中,
∵∠HDF+∠F=∠BAC,
∴∠CHG=∠FDG+∠DCH=∠FDG+∠F+∠CAF=∠BAC+∠CAF=∠BAF,
∴∠CHG=∠BAF;
(2)结论:AF=DG.理由如下,
如图③中,延长BD到R,使得BR=CF,连接AR,作AJ∥CF交EG的延长线于J,
∵AJ∥CE,AC∥JE,
∴四边形ACEJ是平行四边形,
∴AJ=CE,AC=JE,
∵AB=CA,
∴JE=AB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABR=∠ACF,
在△ABR和△ACF中, ,
∴△ABR≌△ACF(SAS),
∴AR=AF,
∵BR=CF,BD=EF,
∴DR=CE=AJ,ED=BF,
∵AJ∥RD,
∴四边形ARDJ是平行四边形,
∴JD=AR=AF,
在△ABF和△JED中, ,
∴△ABF≌△JED(SSS),
∴∠1=∠BAF,
∵∠BAF=∠CHG=∠2,
∴∠1=∠2,
∴DG=DJ,
∴AF=DG.
科目:初中数学 来源: 题型:
【题目】如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:
(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.
(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求+的值;
(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.
(1)求MP的值;
(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?
(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是 的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2 时,则阴影部分的面积为( )
A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点为轴上的动点,点为轴上方的动点,连接,,.
(1)如图1,当点在轴上,且满足的角平分线与的角平分线交于点,请直接写出的度数;
(2)如图2,当点在轴上,的角平分线与的角平分线交于点,点在的延长线上,且满足,求;
(3)如图3,当点在第一象限内,点是内一点,点,分别是线段,上一点,满足:,,.
以下结论:①;②平分;③平分;④.
正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P,B,C为顶点的三角形是等腰三角形,则P,D(P,D两点不重合)两点间的最短距离为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中;长方形ABCD的四个顶点分别为;,,.对该长方形及其内部的每一个点都进行如下操作:把每个点的横坐标都乘以同一个实数,纵坐标都乘以3,再将得到的点向右平移个单位,向下平移个单位,得到长方形及其内部的点,其中点,,,的对应点分别为A’,B’,C’,D’,
(1)点A’的横坐标为______(用含,的式子表示)
(2)若点A’的坐标为,点C’的坐标为,求,的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com