精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在ABC中,∠ABC和∠ACB的角平分线相交于点P,且PEABPFAC,垂足分别为EF

1)求证:PE=PF

2)若∠BAC=60°,连接AP,求∠EAP的度数.

【答案】1)见解析;(230°.

【解析】

1)作PDBC于点D,根据角平分线的性质知PD=PEPD=PF,从而证明PE=PF即可;

2)∠ABC和∠ACB的角平分线相交于点P,则AP平分∠BAC,即可求出∠EAP的度数.

1)作PDBC于点D

BP平分∠ABCCP平分∠ACBPEABPFAC

PD=PEPD=PF

PE=PF

2)∵∠ABC和∠ACB的角平分线相交于点P

AP平分∠BAC

∵∠BAC=60°

∠EAP=30°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为(小时),两车之间的距离为(千米),图中的折线表示之间的函数关系。

根据图象回答下列问题:

(1)甲地与乙地相距______千米,两车出发后______小时相遇;

(2)普通列车到达终点共需_______小时,普通列车的速度是______千米/小时;

(3)动车的速度是________千米/小时;

(4)的值为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点BC重合),点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=n

(1)如图(1),当点D在边BC上时,且n=36°,则∠BAD= _________,∠CDE= _________.

(2)如图(2),当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由.

(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+b分别与x轴、y轴交于A,B两点,点A的坐标为(3,0),过点B的另一条直线交x轴负半轴于点C,且OB:OC=3:1.

(1)求点B的坐标及直线BC对应的函数表达式;

(2)在线段OB上存在点P,使得点P到点B,C的距离相等,试求出点P的坐标;

(3)如果在x轴上方存在点D,使得以点A,B,D为顶点的三角形与△ABC全等,请直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=x2﹣(3m+1)x+2m2+m(m>0),与y轴交于点C,与x轴交于点A(x1,0),B(x2,0),且x1<x2

(1)求2x1﹣x2+3的值;

(2)当m=2x1﹣x2+3时,将此抛物线沿对称轴向上平移n个单位,使平移后得到的抛物线顶点落在ABC的内部(不包括ABC的边),求n的取值范围(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学本课堂的实践中,王老师经常让学生以问题为中心进行自主、合作、探究学习.

(课堂提问)王老师在课堂中提出这样的问题:如图1,在RtABC中,∠ACB=90°,∠BAC=30°,那么BCAB有怎样的数量关系?

(互动生成)经小组合作交流后,各小组派代表发言.

1)小华代表第3小组发言:AB=2BC. 请你补全小华的证明过程.

证明:把ABC沿着AC翻折,得到ADC.

∴∠ACD=ACB=90°

∴∠BCD=ACD+ACB=90°+90°=180°

即:点BCD共线.

(请在下面补全小华的证明过程)

2)受到第3小组翻折的启发,小明代表第2小组发言:如图2,在ABC中,如果把条件ACB=90°”改为ACB=135°”,保持BAC=30°”不变,若BC=1,求AB的长.

(能力迁移)我们发现,翻折可以探索图形性质,请利用翻折解决下面问题.

如图3,点DABC内一点,AD=AC,∠BAD=CAD=20°,∠ADB+ACB=210°,则ADDBBC三者之间的数量关系是 .

(课后拓展)如图4,在四边形ABCD中,∠BCD=45°,∠BAD=90°,∠ADB=CDB=60°,且AC=1

ABD的周长为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为线段上一动点(不与点重合),在同侧分别作等边和等边交于点交于点交于点,连接.下列五个结论:①;②;③;④DE=DP;⑤.其中正确结论的个数是( )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DBC边上一点,∠B=30°DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,E、F分别是AD、BC上的点,将平行四边形ABCD沿EF所在直线翻折,使点B与点D重合,且点A落在点A′处.

(1)求证:A′ED≌△CFD;

(2)连结BE,若∠EBF=60°,EF=3,求四边形BFDE的面积.

查看答案和解析>>

同步练习册答案