精英家教网 > 初中数学 > 题目详情

【题目】(1)阅读理解:

如图,在ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将ACD绕着点D逆时针旋转180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是

(2)问题解决:

如图,在ABC中,D是BC边上的中点,DEDF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CFEF;

(3)问题拓展:

如图,在四边形ABCD中,B+D=180°,CB=CD,BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

【答案】(1)2AD8;(2)证明详见解析;(3)BE+DF=EF;理由详见解析.

【解析】

试题分析:(1)延长AD至E,使DE=AD,由SAS证明ACD≌△EBD,得出BE=AC=6,在ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;

(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在BME中,由三角形的三边关系得出BE+BMEM即可得出结论;

(3)延长AB至点N,使BN=DF,连接CN,证出NBC=D,由SAS证明NBC≌△FDC,得出CN=CF,NCB=FCD,证出ECN=70°=ECF,再由SAS证明NCE≌△FCE,得出EN=EF,即可得出结论.

试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图所示:

AD是BC边上的中线,

BD=CD,

BDE和CDA中,BD=CD,BDE=CDA,DE=AD,

∴△BDE≌△CDA(SAS),

BE=AC=6,

ABE中,由三角形的三边关系得:AB﹣BEAEAB+BE,

10﹣6AE10+6,即4AE16,

2AD8;

故答案为:2AD8;

(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图所示:

同(1)得:BMD≌△CFD(SAS),

BM=CF,

DEDF,DM=DF,

EM=EF,

BME中,由三角形的三边关系得:BE+BMEM,

BE+CFEF;

(3)解:BE+DF=EF;理由如下:

延长AB至点N,使BN=DF,连接CN,如图3所示:

∵∠ABC+D=180°,NBC+ABC=180°,

∴∠NBC=D,

NBC和FDC中,

BN=DF,NBC =D,BC=DC,

∴△NBC≌△FDC(SAS),

CN=CF,NCB=FCD,

∵∠BCD=140°,ECF=70°,

∴∠BCE+FCD=70°,

∴∠ECN=70°=ECF,

NCE和FCE中,

CN=CF,ECN=ECF,CE=CE,

∴△NCE≌△FCE(SAS),

EN=EF,

BE+BN=EN,

BE+DF=EF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)已知4m=a8n=b,用含ab的式子表示下列代数式①求:22m+3n的值,

②求:24m6n的值;

2)已知2×8x×16=223,x的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形ABCD中,AEAF分别是BCCD的垂直平分线,∠EAF80°CBD30°,则∠ADC的度数为( )

A. 45° B. 60°

C. 80° D. 100°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:
(1)2x(a﹣b)﹣(b﹣a)
(2)3a2﹣27
(3)(y2﹣1)2+6(1﹣y2)+9.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A关于x轴对称点的坐标为(2-1),则点A的坐标为:( )

A. (-2,1) B. (2,1) C. (-2,-1) D. (-1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其他都相同.

(1)小明认为,搅匀后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的.你同意他的说法吗?为什么?

(2)搅匀后从中摸出一个球,请求出不是白球的概率;

(3)搅匀后从中任意摸出一个球,要使摸出红球的概率为,应添加几个红球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当x=3时,整式px3+qx+1的值等于2012,那么当x=﹣3时,整式px3+qx+1的值为(
A.2013
B.﹣2012
C.2014
D.﹣2010

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近年来,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年3月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年3月份与去年3月份卖出的A型车数量相同,则今年3月份A型车销售总额将比去年3月份销售总额增加25%.
(1)求今年3月份A型车每辆销售价多少元;
(2)该车行计划4月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A,B两种型号车的进货和销售价格表:

A型车

B型车

进货价格(元/辆)

1100

1400

销售价格(元/辆)

今年的销售价格

2400

查看答案和解析>>

同步练习册答案