精英家教网 > 初中数学 > 题目详情

【题目】为丰富学生的文体生活,育红学校准备成立声乐、演讲、舞蹈、足球、篮球五个社团,要求每个学生都参加一个社团且每人只能参加一个社团.为了了解即将参加每个社团的大致人数,学校对部分学生进行了抽样调查在整理调查数据的过程中,绘制出如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:

(1)被抽查的学生一共有多少人?

(2)将条形统计图补充完整.

(3)若全校有学生1500人,请你估计全校有意参加声乐社团的学生人数.

(4)从被抽查的学生中随意选出1人,该学生恰好选择参加演讲社团的概率是多少?

【答案】(1)100人;(2)补图见解析;(3)330人;(4).

【解析】

(1)用足球的人数除以所占的百分比即可得出被抽查的学生数;

(2)用总人数乘以舞蹈人数所占的百分比求出舞蹈的人数,从而补全统计图;

(3)用全校的总人数乘以参加声乐社团的学生人数所占的百分比即可;

(4)用参加演讲社团的人数除以总人数即可得出答案.

解:(1)被抽查的学生数是:15÷15%=100()

(2)舞蹈人数有100×20%=20(),补图如下:

(3)根据题意得:1500×=330()

答:估计全校有意参加声乐社团的学生人数有330人;

(4)该学生恰好选择参加演讲社团的概率是:=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】五一假日期间,某网店为了促销,设计了一种抽奖送积分活动,在该网店网页上显示如图所示的圆形转盘,转盘被均等的分成四份,四个扇形上分别标有谢谢惠顾“10“20“40字样.参与抽奖的顾客只需用鼠标点击转盘,指针就会在转动的过程中随机的停在某个扇形区域,指针指向扇形上的积分就是顾客获得的奖励积分,凡是在活动期间下单的顾客,均可获得两次抽奖机会,求两次抽奖顾客获得的总积分不低于30分的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三张卡片的正面分别写有数字3、3、4,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.

(1)从中任意抽取一张卡片,该卡片上数字是3的概率为_______;

(2)学校将组织歌咏比赛,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字后放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于6,小刚去;若和等于7,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,MBC上的点,EAD的延长线的点,且AEAM,过EEFAM垂足为FEFDC于点N

1)求证:AFBM

2)若AB12AF5,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,,,,,连接,是在四边形边上的一点;若点的距离为 ,这样的点

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+bk0)的图象与反比例函数的图象相交于A-1m),Bn-1)两点,直线ABy轴交于C点,连接OB

1)求一次函数的表达式;

2)在x轴上找一点P,连接BP,使BOP的面积等于BOC的面积的2倍,求满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题是真命题的是(

A.有两条边对应相等的两个三角形全等

B.两腰对应相等的两个等腰三角形全等

C.两角对应相等的两个等腰三角形全等

D.一边对应相等的两个等边三角形全等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列两段材料,回答问题:

材料一:点Ax1y1),Bx2y2)的中点坐标为().例如,点(15),(3,﹣1)的中点坐标为(),即(22).

材料二:如图1,正比例函数l1yk1xl2yk2x的图象相互垂直,分别在l1l2上取点AB,使得AOBO.分别过点ABx轴的垂线,垂足分别为点CD.显然,AOC≌△OBD.设OCBDaACODb,则A(﹣ab),Bba).于是k1=﹣k2,所以k1k2的值为一个常数.一般地,一次函数yk1x+b1yk2x+b2可分别由正比例函数l1l2平移得到.

所以,我们经过探索得到的结论是:任意两个一次函数yk1x+b1yk2x+b2的图象相互垂直,则k1k2的值为一个常数.

1)在材料二中,k1k2  (写出这个常数具体的值);

2)如图2,在矩形OBACA42),点DOA中点,用两段材料的结论,求点D的坐标和OA的垂直平分线l的解析式;

3)若点C与点C关于OA对称,用两段材料的结论,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线C1:y=ax2+bx+1的顶点坐标为D(1,0)且经过点(0,1),将抛物线C1向右平移1个单位,向下平移1个单位得到抛物线C2,直线y=x+c,经过点Dy轴于点A,交抛物线C2于点B,抛物线C2的顶点为P.

(1)求抛物线C1的解析式;

(2)如图2,连结AP,过点BBC⊥APAP的延长线于C,设点Q为抛物线上点P至点B之间的一动点,连结BQ并延长交AC于点F,

当点Q运动到什么位置时,SPBD×SBCF=8?

连接PQ并延长交BC于点E,试证明:FC(AC+EC)为定值.

查看答案和解析>>

同步练习册答案