【题目】如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线EF,交AB和AC的延长线于E、F.
(1)求证:FE⊥AB;
(2)当AE=6,sin∠CFD=时,求EB的长.
【答案】(1)见解析;(2).
【解析】
(1)先证明OD∥AB,得出∠ODF=∠AEF,再由切线的性质得出∠ODF=90°,证出∠AEF=90°,即可得出结论;
(2)设OA=OD=OC=r,先由三角函数求出AF,再证明△ODF∽△AEF,得出对应边成比例求出半径,得出AB,即可求出EB.
(1)证明:连接OD,如图所示:
∵OC=OD,
∴∠OCD=∠ODC,
∵AB=AC,
∴∠ACB=∠B,
∴∠ODC=∠B,
∴OD∥AB,
∴∠ODF=∠AEF,
∵EF与⊙O相切,
∴OD⊥EF,
∴∠ODF=90°,
∴∠AEF=∠ODF=90°,
∴EF⊥AB;
(2)解:设OA=OD=OC=r,
由(1)知:OD∥AB,OD⊥EF,
在Rt△AEF中,sin∠CFD=,AE=6,
∴AF=10,
∵OD∥AB,
∴△ODF∽△AEF,
∴
∴
解得r=,
∴AB=AC=2r=,
∴EB=AB﹣AE=﹣6=.
科目:初中数学 来源: 题型:
【题目】如图所示,在正方形ABCD中,以AB为边向正方形外作等边三角形ABE,连接CE、BD交于点G,连接AG,那么∠AGD的底数是______度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠A=Rt∠,AB=4,AE=2,点C在线段AE上运动(不与点A点E重合),过点E作ED⊥BC交BC的延长线于D,则的最大值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:
①ac>0;②16a+4b+c=0;③若m>n>0,则x=1+m时的函数值大于x=1﹣n时的函数值;④点(﹣,0)一定在此抛物线上.其中正确结论的序号是( )
A. ①②B. ②③C. ②④D. ③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量白塔的高度AB,在D处用高为1.5米的测角仪 CD,测得塔顶A的仰角为42°,再向白塔方向前进12米,又测得白塔的顶端A的仰角为61°,求白塔的高度AB.(参考数据sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,在一次购物中,张华和李红都想从“微信”、“支付宝”、“银行卡”、“现金”四种支付方式中选一种方式进行支付.
(1)张华用“微信”支付的概率是______.
(2)请用画树状图或列表法求出两人恰好选择同一种支付方式的概率.(其中“微信”、“支付宝”、“银行卡”、“现金”分别用字母“A”“B”“C”“D”代替)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com