精英家教网 > 初中数学 > 题目详情

【题目】为了测量白塔的高度AB,在D处用高为1.5米的测角仪 CD,测得塔顶A的仰角为42°,再向白塔方向前进12米,又测得白塔的顶端A的仰角为61°,求白塔的高度AB.(参考数据sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,结果保留整数)

【答案】这个电视塔的高度AB23米.

【解析】

AE=x,在Rt△ACE中表示出CE,在Rt△AFE中表示出FE,再由DH=CF=12米,可得出关于x的方程,由此即可求解

解:设AE=x,

Rt△ACE中,CE==1.1x,

Rt△AFE中,FE==0.55x,

由题意得,CF=CE﹣FE=1.1x﹣0.55x=12,

解得:x=

AB=AE+BE=+1.5≈23米.

答:这个电视塔的高度AB23米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】港珠澳大桥是世界最长的跨海大桥,连接香港大屿山、澳门半岛和广东省珠海市,其中珠海站到香港站全长约55千米,20181024日上午9时正式通车.一辆观光巴士自珠海站出发,25分钟后,一辆小汽车从同一地点出发,结果同时到达香港站.已知小汽车的速度是观光巴士的1.6倍,求观光巴士的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB⊙O的直径,P⊙O外一点,且OP∥BC∠P=∠BAC

(1)求证:PA⊙O 的切线;

(2)若OB=5OP=,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列条件中,不能证明ABD≌△ACD的是( ).

A.BD=DCAB=AC B.ADB=ADCBD=DC

C.B=CBAD=CAD D. B=CBD=DC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把等边△ABC沿DE翻折,使点A落在BC上的F处,给出以下结论:

①∠BDF=∠EFC;

②BDCE=BFCF;

③SBDF+SEFC=

BF:CF=1:2,则AD:AE=4:5.其中正确的结论有_____.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点B(0,3),点C(4,0)

(1)求线段BC的长.

(2)如图1,点A(﹣1,0),D是线段BC上的一点,若△BAD∽△BCA时,求点D的坐标.

(3)如图2,以BC为边在第一象限内作等边△BCE,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:

方案一:从纸箱厂定制购买,每个纸箱价格为4元;

方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.

1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式;

2)假设你是决策者,你认为应该选择哪种方案?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DEABEDFACF,若BDCDBECF

1)求证:AD平分∠BAC

2)写出AB+ACAE之间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在ABC中,∠A=90°,AB=AC,点DBC的中点.

(1)如图①,若点E、F分别为AB、AC上的点,且DEDF,求证:BE=AF;

(2)若点E、F分别为AB、CA延长线上的点,且DEDF,那么BE=AF吗?请利用图②说明理由.

查看答案和解析>>

同步练习册答案