【题目】已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.连接DE,若∠ADE=3∠CDE,∠AED=60°.
(1)求证:∠ABC=∠ADC;
(2)求∠CDE的度数.
【答案】(1)详见解析;(2)15°.
【解析】
(1)根据平行线的性质即可得到答案;
(2)根据∠ADE=3∠CDE,设∠CDE=x°,∠ADE=3x°,∠ADC=2x°,根据平行线的性质得出方程90﹣x+60+3x=180,求出x即可.
解(1)∵AB∥CD,
∴∠ABC=∠DCE,
∵AD∥BC,
∴∠ADC=∠DCE,
∴∠ABC=∠ADC,
(2)设∠CDE=x,则∠ADC=2x,
∵AB∥CD,
∴∠BAD=180°﹣2x,
∵AE平分∠BAD,
∴∠EAD=∠BAD=90°﹣x,
∵AD∥BC,
∴∠BEA=∠EAD=90°﹣x,
∴∠BED+∠ADE=180°,
∴90°﹣x+60°+3x=180°,
∴x=15°,
∴∠CDE=15°.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为 ,则a的值是( )
A.2
B.2+
C.2
D.2+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段MN=8,C是线段MN上一动点,在MN的同侧分别作等边△CMD和等边△CNE.
(1)如图①,连接DN与EM,两条线段相交于点H,求证ME=DN,并求∠DHM的度数;
(2)如图②,过点D、E分别作线段MN的垂线,垂足分别为F、G,问:在点C运动过程中,DF+EG的长度是否为定值,如果是,请求出这个定值,如果不是请说明理由;
(3)当点C由点M移到点N时,点H移到的路径长度为(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.
(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).
①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 (单位长度/秒);点B运动的速度是 (单位长度/秒).
②若点P为数轴上一点,且PA﹣PB=OP,求的值;
(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的坐标系中,△ABC的三个顶点的坐标依次为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).
(1)请在这个坐标系中作出△ABC关于y轴对称的△A1B1C1.
(2)分别写出点A1、B1、C1的坐标.
(3)求△A1B1C1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。连结OD,作BE⊥CD于点E,交半圆O于点F。已知CE=12,BE=9
(1)求证:△COD∽△CBE;
(2)求半圆O的半径 的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,点P从A点出发沿路径向终点运动,终点为B点;点Q从B点出发沿路径向终点运动,终点为A点点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作于E,于问:点P运动多少时间时,与QFC全等?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学开展“绿化家乡、植树造林”活动,为了解全校植树情况,对该校甲、乙、丙、丁四个班级植树情况进行了调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:
(1)这四个班共植树棵;
(2)请你在答题卡上补全两幅统计图;
(3)求图1中“甲”班级所对应的扇形圆心角的度数;
(4)若四个班级植树的平均成活率是95%,全校共植树2000棵,请你估计全校种植的树中成活的树有多少棵?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com