分析 (1)如图1,当点G恰好在BC边上时,四边形ABGE的形状是正方形,理由为:由折叠得到两对边相等,三个角为直角,确定出四边形ABEG为矩形,再由矩形对边相等,等量代换得到四条边相等,即邻边相等,即可得证;
(2)①如图2,连接EF,由ABCD为矩形,得到两组对边相等,四个角为直角,再由E为AD中点,得到AE=DE,由折叠的性质得到BG=AB,EG=AE=ED,且∠EGB=∠A=90°,利用HL得到直角三角形EFG与直角三角形EDF全等,利用全等三角形对应边相等得到DF=FG,由BF=BG+GF,等量代换即可得证;
②CF=DF,理由为:不妨假设AB=DC=a,DF=b,表示出AD=BC,由①得:BF=AB+DF,进而表示出BF,CF,在直角三角形BCF中,利用勾股定理列出关系式,整理得到a=2b,由CD-DF=FC,代换即可得证.
解答 解:(1)如图1,当点G恰好在BC边上时,四边形ABGE的形状是正方形,
理由为:由折叠得:AB=BG,AE=EG,∠EGB=∠A=∠ABC=90°,
∴四边形ABEG为矩形,
∴EG=AB,
∴AB=BG=AE=EG,
则四边形ABEG为正方形;
故答案为:正方形;
(2)①如图2,连结EF,![]()
在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°,
∵E是AD的中点,
∴AE=DE,
∵△ABE沿BE折叠后得到△GBE,
∴BG=AB,EG=AE=ED,∠A=∠BGE=90°,
∴∠EGF=∠D=90°,
在Rt△EGF和Rt△EDF中,
$\left\{\begin{array}{l}{EG=ED}\\{EF=EF}\end{array}\right.$,
∴Rt△EGF≌Rt△EDF(HL),
∴DF=FG,
∴BF=BG+GF=AB+DF;
②不妨假设AB=DC=a,DF=b,
∴AD=BC=$\sqrt{2}$a,
由①得:BF=AB+DF,
∴BF=a+b,CF=a-b,
在Rt△BCF中,由勾股定理得:BF2=BC2+CF2,即(a+b)2=($\sqrt{2}$a)2+(a-b)2,
整理得:4ab=2a2,
∵a≠0,
∴a=2b,即CD=2DF,
∵CF=CD-DF,
∴CF=DF.
点评 此题属于四边形综合题,涉及的知识有:折叠的性质,正方形的判定,全等三角形的判定与性质,勾股定理,熟练掌握判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com