精英家教网 > 初中数学 > 题目详情

【题目】已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y= 交于点C(1,a).

(1)试确定双曲线的函数表达式;
(2)将l1沿y轴翻折后,得到l2 , 画出l2的图象,并求出l2的函数表达式;
(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求SAMN的取值范围.

【答案】
(1)

解:令x=1代入y=x+3,

∴y=1+3=4,

∴C(1,4),

把C(1,4)代入y= 中,

∴k=4,

∴双曲线的解析式为:y=


(2)

解:如图所示,

设直线l2与x轴交于点D,

由题意知:A与D关于y轴对称,

∴D的坐标为(3,0),

设直线l2的解析式为:y=ax+b,

把D与B的坐标代入上式,

得:

∴解得:

∴直线l2的解析式为:y=﹣x+3


(3)

解:设M(3﹣t,t),

∵点P在线段AC上移动(不包括端点),

∴0<t<4,

∴PN∥x轴,

∴N的纵坐标为t,

把y=t代入y=

∴x=

∴N的坐标为( ,t),

∴MN= ﹣(3﹣t)= +t﹣3,

过点A作AE⊥PN于点E,

∴AE=t,

∴SAMN= AEMN,

= t( +t﹣3)

= t2 t+2

= (t﹣ 2+

由二次函数性质可知,当0≤t≤ 时,SAMN随t的增大而减小,当 <t≤4时,SAMN随t的增大而增大,

∴当t= 时,SAMN可取得最小值为

当t=4时,SAMN可取得最大值为4,

∵0<t<4

≤SAMN<4


【解析】本题考查函数的综合问题,涉及待定系数法求一次函数解析式和反比例函数解析式,三角形面积等知识,由于有动点,所以难度较高,需要学生利用参数去表示相关坐标,然后求出函数关系式.(1)令x=1代入一次函数y=x+3后求出C的坐标,然后把C代入反比例函数解析式中即可求出k的值;(2)设直线l2与x轴交于D,由题意知,A与D关于y轴对称,所以可以求出D的坐标,再把B点坐标代入y=ax+b即可求出直线l2的解析式;(3)设M的纵坐标为t,由题意可得M的坐标为(3﹣t,t),N的坐标为( ,t),进而得MN= +t﹣3,又可知在△ABM中,MN边上的高为t,所以可以求出SAMN与t的关系式.
【考点精析】通过灵活运用确定一次函数的表达式和三角形的面积,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;三角形的面积=1/2×底×高即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知某道判断题的五个选项中有两个正确答案,该题满分为4分,得分规则是:选出两个正确答案且没有选错误答案得4分;只选出一个正确答案且没有选错误答案得2分;不选或所选答案中有错误答案得0分.
(1)任选一个答案,得到2分的概率是
(2)请利用树状图或表格求任选两个答案,得到4分的概率;
(3)如果小明只能确认其中一个答案是正确的,此时的最佳答题策略是
A.只选确认的那一个正确答案
B.除了选择确认的那一个正确答案,再任选一个
C.干脆空着都不选了.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:

(1)暂停排水需要多少时间?排水孔排水速度是多少?
(2)当2≤t≤3.5时,求Q关于t的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是线段AB上的点,C,D分别是线段OA,OB的中点,小明很轻松地求得CD=AB.他在反思过程中突发奇想:若点O在线段AB的延长线上或在直线AB,则原有的结论“CD=AB”仍然成立吗?请帮小明解决此问题(当点O在线段AB的延长线上时,请画图分析该结论是否成立,并说明理由;当点O在直线AB外时,作出图形,通过度量说明该结论是否成立).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(﹣ 1+3tan30°﹣ +(﹣1)2016

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.

(1)求证:△ABP∽△QEA;
(2)当运动时间t为何值时,△ABP≌△QEA;
(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王老师家买了一套新房其结构如图所示(单位:m)他打算将卧室铺上木地板其余部分铺上地砖

(1)木地板和地砖分别需要多少平方米

(2)如果地砖的价格为每平方米x木地板的价格为每平方米3x那么王老师需要花多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y= x+2与双曲线相交于点A(m,3),与x轴交于点C.
(1)求双曲线解析式;
(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.

查看答案和解析>>

同步练习册答案