【题目】已知某道判断题的五个选项中有两个正确答案,该题满分为4分,得分规则是:选出两个正确答案且没有选错误答案得4分;只选出一个正确答案且没有选错误答案得2分;不选或所选答案中有错误答案得0分.
(1)任选一个答案,得到2分的概率是;
(2)请利用树状图或表格求任选两个答案,得到4分的概率;
(3)如果小明只能确认其中一个答案是正确的,此时的最佳答题策略是
A.只选确认的那一个正确答案
B.除了选择确认的那一个正确答案,再任选一个
C.干脆空着都不选了.
【答案】
(1)
(2)解:不妨设五个选项分别为A、B、C、D、E,其中A、B为正确选项
列表如下:
共有20种等可能的结果数,其中AB占2个结果数,
所以得4分的概率= =
(3)A
【解析】解:(1)五个选项中有两个正确答案,任选一个答案,选对正确答案的概率= ;(2)不妨设五个选项分别为A、B、C、D、E,其中A、B为正确选项列表如下:
共有20种等可能的结果数,其中AB占2个结果数,
所以得4分的概率= = ;(3)只选确认的那一个正确答案,则可得2分;
若除了选择确认的正确答案A,再从B、C、D、E中任意选择剩下的四个选项中的一个,
则再选正确答案的概率为 ,选错误答案的概率为 ,
所以此时得分=4× +0× =1,
所以此时的最佳答题策略是只选确认的那一个正确答案.
所以答案是A.
【考点精析】通过灵活运用列表法与树状图法,掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率即可以解答此题.
科目:初中数学 来源: 题型:
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图形变换中的数学,问题情境:在课堂上,兴趣学习小组对一道数学问题进行了深入探究,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,连接CD.
(1)探索发现:
如图①,BC与BD的数量关系是;
(2)猜想验证:
如图②,若P是线段CB上一动点(点P不与点B,C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想BF,BP,BD三者之间的数量关系,并证明你的结论;
(3)拓展延伸:
若点P是线段CB延长线上一动点,按照(2)中的作法,请在图③中补全图象,并直接写出BF、BP、BD三者之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球个数的2倍少5个,已知从袋中摸出一个红球的概率是 .
(1)求袋中红球的个数;
(2)求从袋中摸出一个球是白球的概率;
(3)取走5个黄球5个白球,求从剩余的球中摸出一个球是红球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④2a+b=0.其中判断正确的是 . (只填写正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题正确的是( )
A.一组对边相等,另一组对边平行的四边形一定是平行四边形
B.对角线相等的四边形一定是矩形
C.两条对角线互相垂直的四边形一定是菱形
D.两条对角线相等且互相垂直平分的四边形一定是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在三角形ABC中,点O是AC边上的一个动点,过点O做直线MN平行于BC,设MN∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)试说明:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】回答下面的例题:
解方程:x2﹣|x|﹣2=0.
解:①x≥0时,原方程化为x2﹣x﹣2=0,解得x1=2,x2=﹣1(不合题意,舍去).
②x<0时,原方程化为x2+x﹣2=0,解得x1=﹣2,x2=1(不合题意,舍去).
∴原方程的根是x1=2,x2=﹣2.
请参照例题解方程x2+|x﹣4|﹣8=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y= 交于点C(1,a).
(1)试确定双曲线的函数表达式;
(2)将l1沿y轴翻折后,得到l2 , 画出l2的图象,并求出l2的函数表达式;
(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com