精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④2a+b=0.其中判断正确的是 . (只填写正确结论的序号)

【答案】①④
【解析】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,即b2>4ac,所以①正确;
∵抛物线的对称轴是直线x=1,但不能确定抛物线与x轴的交点坐标,
∴4a﹣2b+c<0不确定;不等式ax2+bx+c>0的解集x>3错误,所以②③错误;
∵抛物线的对称轴是直线x=1,
∴﹣ =1,即b=﹣2a,
∵2a+b=0,所以④正确.
所以答案是:①④.
【考点精析】根据题目的已知条件,利用二次函数图象以及系数a、b、c的关系的相关知识可以得到问题的答案,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+3的对称轴是直线x=1.
(1)求证:2a+b=0;
(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1 , 它与x轴交于点O,A1;将C1绕点A1旋转180°得C2 , 交x轴于点A2;将C2绕点A2旋转180°得C3 , 交x轴于点A3;…,如此进行下去,直至得Cn . 若P(2014,m)在第n段抛物线Cn上,则m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线 y=﹣ x2+ x+4经过A、B两点.

(1)求出点A、点B的坐标;
(2)若在线段AB上方的抛物线有一动点P,过点P作直线l⊥x轴交AB于点Q,设点P的横坐标为t(0<t<8),求△ABP的面积S与t的函数关系式,并求出△ABP的最大面积;
(3)在(2)的条件下,是否存在一点P,使SAPB= SABC?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知某道判断题的五个选项中有两个正确答案,该题满分为4分,得分规则是:选出两个正确答案且没有选错误答案得4分;只选出一个正确答案且没有选错误答案得2分;不选或所选答案中有错误答案得0分.
(1)任选一个答案,得到2分的概率是
(2)请利用树状图或表格求任选两个答案,得到4分的概率;
(3)如果小明只能确认其中一个答案是正确的,此时的最佳答题策略是
A.只选确认的那一个正确答案
B.除了选择确认的那一个正确答案,再任选一个
C.干脆空着都不选了.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】依次连接菱形各边中点所得到的四边形是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC=2,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转90°,得到△ADE,其中点B与点D是对应点,点C与点E是对应点,连接BD,则BD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为

查看答案和解析>>

同步练习册答案