【题目】已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①abc>0;②a﹣b+c<0;③2a+b﹣c<0;④4a+2b+c>0,⑤若点(﹣ ,y1)和( ,y2)在该图象上,则y1>y2.其中正确的结论是_____(填入正确结论的序号)
【答案】②③④
【解析】解:∵抛物线开口向下,
∴a<0,
∵对称轴在y轴右边,
∴b>0,
∵抛物线与y轴的交点在x轴的上方,
∴c>0,
∴abc<0,故①错误;
∵二次函数y=ax2+bx+c图象可知,当x=﹣1时,y<0,
∴a﹣b+c<0,故②正确;
∵二次函数图象的对称轴是直线x=1,c>0,
∴﹣=1,
∴2a+b=0,
∴2a+b<c,
∴2a+b﹣c<0,故③正确;
∵二次函数y=ax2+bx+c图象可知,当x=2时,y>0,
∴4a+2b+c>0,故④正确;
∵二次函数图象的对称轴是直线x=1,
∴抛物线上x=﹣时的点与当x=时的点对称,
∵x>1,y随x的增大而减小,
∴y1<y2,故⑤错误;
故答案为:②③④.
科目:初中数学 来源: 题型:
【题目】把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).
(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;
(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;
(3)当t为何值时,△APQ是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】去学校食堂就餐,经常会在一个买菜窗口前等待,经调查发现,同学的舒适度指数y与等时间x(分)之间满足反比例函数关系,如下表:
等待时间x | 1 | 2 | 5 | 10 | 20 |
舒适度指数y | 100 | 50 | 20 | 10 | 5 |
已知学生等待时间不超过30分钟
(1)求y与x的函数关系式,并写出自变量x的取值范围.
(2)若等待时间8分钟时,求舒适度的值;
(3)舒适度指数不低于10时,同学才会感到舒适.请说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,正确的是( )
A. 在同一平面内,垂直于同一条直线的两条直线平行;
B. 相等的角是对顶角;
C. 两条直线被第三条直线所截,同位角相等;
D. 和为180°的两个角叫做邻补角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的长;
(2)求△ADB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).
(1)求点C到x轴的距离;
(2)分别求△ABC的三边长;
(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com