精英家教网 > 初中数学 > 题目详情
5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.则下列等式正确的个数有(  )
①AC•BC=AB•CD;②AC2-AD2=BC2-BD2;③CD2=AD•BD;④$\frac{1}{{A{C^2}}}+\frac{1}{{B{C^2}}}=\frac{1}{{A{B^2}}}$.
A.4个B.3个C.2个D.1个

分析 如图,由三角形的面积公式证明AC•BC=AB•CD成立,得到①成立;由勾股定理、射影定理分别证明AC2-AD2=BC2-BD2、CD2=AD•BD成立,得到②③成立,即可解决问题.

解答 解:如图,∵△ABC为直角三角形,且CD⊥AB,
∴$\frac{1}{2}AC•BC=\frac{1}{2}AB•CD$,即AC•BC=AB•CD.
故选项①正确;由勾股定理得:
AC2-AD2=CD2,BC2-BD2=CD2
∴AC2-AD2=BC2-BD2
故选项②正确;由射影定理得:
CD2=AD•BD,故选项③正确,
综上所述,正确选项有三个.
故选B.

点评 该题主要考查了直角三角形中的射影定理、勾股定理及其应用问题;牢固掌握射影定理、勾股定理等几何知识点是灵活运用、解题的基础和关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,△ABC中,∠BAC=45°,AD⊥BC于D,BD=2,AD=6,求CD的长,小明同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小明的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD和△ACD的轴对称图形,D点的对称点分别为E、F,延长EB,FC交于M点,判断四边形AEMF的形状,并说明理由;
(2)设CD=x,利用勾股定理,在△BCM中建立关于x的方程模型,并求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.乐平街上新开张了一家“好又多”超市,这个星期天,张明和妈妈去这家新开张的超市买东西,如图反映了张明从家到超市的时间t(分钟)与距离s(米)之间关系的一幅图.
(1)图中反映了哪两个变量之间的关系?超市离家多远?
(2)张明从家出发到达超市用了多少时间?从超市返回家花了多少时间?
(3)张明从家出发后20分钟到30分钟内可能在做什么?
(4)张明从家到超市时的平均速度是多少?返回时的平均速度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如对于任意的实数a、b都有f(a+b)=f(a)+f(b)且f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(2)}$+$\frac{f(6)}{f(3)}$+…+$\frac{f(2012)}{f(1006)}$的值是(  )
A.1005B.1006C.2012D.2010

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.钓鱼岛自古以来就是中国的领土,如图,我国甲、乙两艘海岛执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往P处海域巡查的任务,并测得P处位于A处北偏东53.5°方向上、在B的西北方向上,船B在船A正东方向140海里处.
(参考数据sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75,$\sqrt{2}$≈1.4)
(1)求P到A,B两船所在直线(即:直线AB)的距离;
(2)若执法船A,B分别以40海里/时,30海里/时的速度同时出发,匀速直线前进,试通过计算判断哪艘船先到达P处.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC 经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q如图1.
(1)四边形OABC的形状是矩形,当α=90°时,$\frac{BP}{BQ}$的值是$\frac{4}{7}$;
(2)在四边形OABC旋转过程中,当0<α≤180°时,存在这样的点P和点Q,使BP=$\frac{1}{2}$BQ.请求出点P的坐标(-9-$\frac{3\sqrt{6}}{2}$,6),P2(-$\frac{7}{4}$,6).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图:在平面直角坐标系中,平行四边形OABC,O是坐标原点,OC在x轴的正半轴上,OC=6,B(9,4)
(1)求tan∠AOC;
(2)D从C点出发,延CO方向以每秒0.75单位的速度运动,点E从O点出发以每秒2个单位的速度,沿线段OA,AB运动,当t为多少时,直线DE平分平行四边形OABC的面积?
(3)在(2)中的直线上是否存在一点P使△BEP与△BEC相似?若存在求点P的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图一,平行四边形ABCD,点M为AD的中点,过D点任意作一直线分别交BM、BC的延长线于E、F点,AF与BE交于N点.
(1)若CF=$\frac{1}{4}$BC,则$\frac{MD}{BF}$的值为$\frac{2}{5}$,$\frac{DE}{DF}$的值为$\frac{2}{3}$;
(2)求证:MN•EB=BN•ME;
(3)如图二,平行四边形ABCD中,若AB⊥BC,证明:∠EAD=∠FAD.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.在锐角△ABC中,AB=5,BC=6,∠ACB=45°(如图),将△ABC绕点B按逆时针方向旋转得到△A′BC′(顶点A、C分别与A′、C′对应),当点C′在线段CA的延长线上时,则AC′的长度为(  )
A.$\sqrt{2}$+$\sqrt{7}$B.3$\sqrt{2}$-$\sqrt{7}$C.3$\sqrt{2}$+$\sqrt{7}$D.3-$\sqrt{7}$

查看答案和解析>>

同步练习册答案