精英家教网 > 初中数学 > 题目详情

【题目】在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.

1)甲、乙两队合作多少天?

2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?

【答案】(1)24(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱

【解析】

1)设甲、乙两队合作t天,甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天,所以乙队单独完成这项工程的速度是甲队单独完成这项工程的,由题意可列方程60-20=t1+),解答即可;
2)把在工期内的情况进行比较即可.

1)设甲、乙两队合作t天,

由题意得:乙队单独完成这项工程的速度是甲队单独完成这项工程的

6020t1+

解得:t24

2)设甲、乙合作完成需y天,则有(+×y1

解得,y36

①甲单独完成需付工程款为60×3.5210(万元).

②乙单独完成超过计划天数不符题意,

③甲、乙合作完成需付工程款为36×3.5+2)=198(万元).

答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+ca0)与x轴交于A﹣20)、B40)两点,与y轴交于点C,且OC=2OA

1)试求抛物线的解析式;

2)直线y=kx+1k0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;

3)在(2)的条件下,点Qx轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点QN,使得以PDQN四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C=90°,以BC为直径的⊙OABEODBC交⊙ODDEBCF,点PCB延长线上的一点,PE延长交ACGPE=PF,下列4个结论:①GE=GCAG=GEOGBE④∠A=P.其中正确的结论是_____(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形中, ,∠=90°,=28cm, =24cm, =4cm,点从点出发,以1cm/s的速度向点运动,点从点同时出发,以2cm/s的速度向点运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动。则四边的面积(cm2)与两动点运动的时间(s)的函数图象大致是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在黄州服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售.

(1)试建立销售价y与周次x之间的函数关系式;

(2)若这种时装每件进价Z与周次x次之间的关系为Z=﹣0.125(x﹣8)2+12,1≤x≤16,且x为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上AB两点对应的有理数分别为xA=﹣5xB6,动点P从点A出发,以每秒1个单位的速度沿数轴在AB之间往返运动,同时动点Q从点B出发,以每秒2个单位的速度沿数轴在BA之间往返运动.设运动时间为t秒.

(1)t2时,点P对应的有理数xP______PQ______

(2)0t11时,若原点O恰好是线段PQ的中点,求t的值;

(3)我们把数轴上的整数对应的点称为“整点”,当PQ两点第一次在整点处重合时,直接写出此整点对应的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地台风带来严重灾害,该市组织20辆汽车装食品、药品、生活用品三种救灾物质共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同种物质且必须装满.根据表格提供的信息,解答下列问题:

物资种类

食品

药品

生活用品

每辆汽车运载量(吨)

6

5

4

每吨所需运费(元/吨)

120

160

100

1)若装食品的车辆是5辆,装药品的车辆为__________辆;

2)设装食品的车辆为x辆,装药品的车辆为y辆,求yx的函数关系式;

3)如果装食品的车辆不少于7辆,装药品的车辆不少于4辆,那么车辆的安排有几种方案?请写出每种方案并求出最少费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系,O为坐标原点,点A(﹣1,0),点B(0,).

(1)求BAO的度数;

(2)如图1,将AOB绕点O顺时针得A′OB′,当A′恰好落在AB边上时,设AB′O的面积为S1BA′O的面积为S2,S1与S2有何关系?为什么?

(3)若将AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解,并完成填空:在图1至图3中,己知的面积为.

1)如图1,延长C的边到点,使,连结.的面积为,则__________(用含的代数式表示);

2)如图2,延长的边到点,延长边到点,使,连结,若的面积为,则__________(用含的代数式表示);

3)在图2的基础上延长AB到点F,使BF=AB,连接FD,得到△DEF(如图3),若阴影部分的面积为S3,S3=___(用含a的代数式表示)

查看答案和解析>>

同步练习册答案