【题目】如图,抛物线y=x2+bx+c经过A(-1,0),C(2,-3)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式及顶点坐标;
(2)若将此抛物线平移,使其顶点为点D,需如何平移?写出平移后抛物线的解析式;
(3)过点P(m,0)作x轴的垂线(1≤m≤2),分别交平移前后的抛物线于点E,F,交直线OC于点G,求证:PF=EG.
【答案】(1),(,);(2)向左个单位长度,再向上平移个单位长度.平移后的抛物线解析式为:.(3)证明见解析.
【解析】
试题(1)把A(-1,0),C(2,-3)代入y=x2+bx+c,得到关于b、c的二元一次方程组,解方程组求出b、c的值,即可求出抛物线的解析式,再利用配方法将一般式化为顶点式,即可求出顶点坐标;
(2)先求出抛物线y=x2-x-2与y轴交点D的坐标为(0,-2),再根据平移规律可知将点(,-)向左平移个单位长度,再向上平移个单位长度,可得到点D,然后利用顶点式即可写出平移后的抛物线解析式为:y=x2-2;
(3)先用待定系数法求直线OC的解析式为y=-x,再将x=m代入,求出yG=-m,yF=m2-2,yE=m2-m-2,再分别计算得出PF=-(m2-2)=2-m2,EG=yG-yE=2-m2,由此证明PF=EG.
试题解析:(1)解:把A(-1,0),C(2,-3)代入y=x2+bx+c,
得:,解得:,
∴抛物线的解析式为:,
∵=,
∴其顶点坐标为:(,-);
(2)解:∵
∴当x=0时,y=-2,
∴D点坐标为(0,-2).
∵将点(,-)向左平移个单位长度,再向上平移个单位长度,可得到点D,
∴将向左平移个单位长度,再向上平移个单位长度,顶点为点D,
此时平移后的抛物线解析式为:;
(3)证明:设直线OC的解析式为y=kx,
∵C(2,-3),
∴2k=-3,解得k=-,
∴直线OC的解析式为y=-x.
当x=m时,yF=m2-2,则PF=-(m2-2)=2-m2,
当x=m时,yE=m2-m-2,yG=-m,
则EG=yG-yE=2-m2,
∴PF=EG.
科目:初中数学 来源: 题型:
【题目】在△ABC和△DEF中,若∠A=∠D,则下列四个条件:①=;②=;③∠B=∠F;④∠E=∠F中,一定能推得△ABC与△DEF相似的共有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△BCD内接于⊙O,直径AB经过弦CD的中点M,AE交BC的延长线于点E,连接AC,∠EAC=∠ABD=30°.
(1)求证:△BCD是等边三角形;
(2)求证:AE是⊙O的切线;
(3)若CE=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,ABCO的顶点A、C的坐标分别为A(2,0)、C(-1,2),反比例函数y=(k≠0)的图象经过点B.
(1)直接写出点B坐标.
(2)求反比例函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2-4x+3.
(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;
(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2018的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出下列说法,其中正确的是( )
①关于的一元二次方程,若,则方程一定没有实数根;
②关于的一元二次方程,若,则方程必有实数根;
③若是方程的根,则;
④若,,为三角形三边,方程有两个相等实数根,则该三角形为直角三角形.
A. ①② B. ①④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D,E,F分别是BC,AB, AC的中点,则下列四个判断中不一定正确的是( )
A. 四边形AEDF一定是平行四边形
B. 若∠A=90°,则四边形AEDF是矩形
C. 若AD平分∠A,则四边形AEDF是正方形
D. 若AD⊥BC,则四边形AEDF是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com