精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,ABAC10厘米,BC12厘米,DBC的中点,点PB出发,以a厘米/秒(a0)的速度沿BA匀速向点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达终点时,另一个动点也随之停止运动,设它们的运动时间为t.

1)若a2,那么t为何值时△BPQ与△BDA相似?

2)已知MAC上一点,若当t时,四边形PQCM是平行四边形,求这时点P的运动速度.

3)在PQ两点运动过程中,要使线段PQ在某一时刻平分△ABD的面积,点P的运动速度应限制在什么范围内?(提示:对于一元二次方程,有如下的结论:若x1x2是方程ax2+bx+c0a≠0)的两个根,则x1+x2=﹣x1x2

【答案】(1)当a2时,t秒或秒时,△BPQ与△BDA相似;(2)点P的速度是2.5厘米/;(3)点P的速度应大于或等于厘米/.

【解析】

1)根据相似的性质,分情况讨论当BPQ∽△BDA时及当BQP∽△BDA时,进行列式计算即可得解;

2)根据BPQ∽△BAC,由相似比即可求出P的速度;

3)根据△BEP∽△BDA进而求出的面积表达式后即可得解.

1)当a2时,BP2tDQtt

DBC中点,BC12

BDDC6

①当BPQ∽△BDA时,如图1

则有

BP2tBD6BA10

解得:

②当△BQP∽△BDA时,如图2

则有

BP2tBD6BA10

解得:

∴当a2时,秒或秒时,△BPQ与△BDA相似;

2)当t且四边形PQCM是平行四边形时,如图3

则有PQACBPaDQBQ

PQAC

∴△BPQ∽△BAC

BPaBA10BQBC12

解得:a2.5

∴点P的速度是2.5厘米/秒;

3)作PEBC,垂足为E,如图4

ABAC,点DBC的中点,

ADBC

AB10BD6

AD8

PEBCADBC

∴△BEP∽△BDA

AD8BPatBA10

∵线段PQ平分△ABD的面积,

整理得:

由题可得:

解得:

此时

∴方程有两个小于6的正实根

∴点P的速度应大于或等于厘米/.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】今年我县为了创建省级文明县城,全面推行中小学校社会主义核心价值观进课堂.某校对全校学生进行了检测评价,检测结果分为(优秀)(良好)(合格)(不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行数据处理,制作了如下所示不完整的统计表和统计图.

请根据统计表和统计图提供的信息,解答下列问题:

1)本次随机抽取的样本容量为__________

2)统计表中__________________

3)若该校共有学生5000人,请你估算该校学生在本次检测中达到(优秀)”等级的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.

组别

体重(千克)

人数

A

37.5≤x42.5

10

B

42.5≤x47.5

n

C

47.5≤x52.5

40

D

52.5≤x57.5

20

E

57.5≤x62.5

10

请根据图表信息回答下列问题:

1)填空:①m=_____,②n=_____,③在扇形统计图中,C组所在扇形的圆心角的度数等于_______度;

2)若把每组中各个体重值用这组数据的中间值代替(例如:A组数据中间值为40千克),则被调查学生的平均体重是多少千克?

3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面内容,并解答问题:

杨辉和他的一个数学问题

我国古代对代数的研究,特别是对方程的解法研究有着优良的传统并取得了重要成果.

杨辉,字谦光,钱塘(今浙江杭州)人,南宋杰出的数学家和数学教育家,杨辉一生留下了大量的著述,他著名的数学书共五种二十一卷,它们是:《详解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通变本末》3卷(1274年,第3卷与他人合编),《田(杨辉,南宋数学家)亩比类乘除捷法》2卷(1275年),《续古摘奇算法》2卷(1275年,与他人合编),其中后三种为杨辉后期所著,一般称之为《杨辉算法》.下面是杨辉在1275年提出的一个问题(选自杨辉所著《田亩比类乘除捷法》):

直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步.

请你用学过的知识解决这个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:

①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABCD= AM2

其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在平面直角坐标系中,点A是抛物线y=x2在第一象限上的一个点,连结OA,过点AABOA,交y轴于点B,设点A的横坐标为n

(探究):

1)当n=1时,点B的纵坐标是  

2)当n=2时,点B的纵坐标是  

3)点B的纵坐标是  (用含n的代数式表示).

(应用):

如图②,将OAB绕着斜边OB的中点顺时针旋转180°,得到BCO

1)求点C的坐标(用含n的代数式表示);

2)当点A在抛物线上运动时,点C也随之运动.当1≤n≤5时,线段OC扫过的图形的面积是  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OABCBC边的中点,且,则________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“双十一”购物街中,某儿童品牌玩具专卖店购进了两种玩具,其中类玩具的金价比玩具的进价每个多元.经调查发现:用元购进类玩具的数量与用元购进类玩具的数量相同.

1)求的进价分别是每个多少元?

2)该玩具店共购进了两类玩具共个,若玩具店将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得的利润不少于元,则该淘宝专卖店至少购进类玩具多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EF过矩形ABCD对角线的交点O,且分别交ABCDEF,若矩形ABCD的面积是12,那么阴影部分的面积是______

查看答案和解析>>

同步练习册答案