12£®£¨1£©½â·½³Ì×é$\left\{{\begin{array}{l}{x-2y=4\;\;\;\;\;\;\;£¨1£©\;\;\;\;}\\{2x+y-3=0\;\;\;£¨2£©\;\;\;\;\;\;}\end{array}}$
£¨2£©½â²»µÈʽ×é$\left\{\begin{array}{l}3£¨x-1£©£¼5x+1\\ \frac{x-1}{2}¡Ý2x-4\end{array}$£¬²¢Ö¸³öËüµÄËùÓеķǸºÕûÊý½â£®
£¨3£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{{{b^2}-{a^2}}}{{{a^2}-ab}}¡Â£¨{a+\frac{{2ab+{b^2}}}{a}}£©•£¨{\frac{1}{a}+\frac{1}{b}}£©$£¬ÆäÖÐ$a={£¨{\frac{1}{2}}£©^{-1}}$+2sin60¡ã£¬b=2£¨2014-¦Ð£©0-|-$\sqrt{3}$|£®

·ÖÎö £¨1£©ÀûÓôúÈëÏûÔª·¨½â·½³Ì×飻
£¨2£©ÏÈ·Ö±ð½âÁ½¸ö²»µÈʽµÃµ½x£¾-2ºÍ$x¡Ü\frac{7}{3}$£¬È»ºó¸ù¾Ý¡°´óСС´óÖмäÕÒ¡±È·¶¨²»µÈʽ×éµÄ½â¼¯£¬ÔÙÀûÓÃÊýÖá±íʾ½â¼¯£»
£¨3£©ÏȰÑÀ¨ºÅÄÚͨ·Ö£¬ÔÙ°Ñ·Ö×Ó·ÖĸÒòʽ·Ö½âºÍ³ý·¨ÔËË㻯Ϊ³Ë·¨ÔËË㣬½Ó×ÅÔ¼·ÖµÃµ½Ô­Ê½=-$\frac{1}{ab}$£¬È»ºó¸ù¾ÝÁãÖ¸ÊýÃݺ͸ºÕûÊýÖ¸ÊýÃݼÆËã³öa¡¢bµÄÖµ£¬ÔÙ°Ña¡¢bµÄÖµ´úÈëԭʽ=-$\frac{1}{ab}$ÖÐÀûÓÃÆ½·½²î¹«Ê½¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©$\left\{{\begin{array}{l}{x-2y=4\;\;\;\;\;\;\;£¨1£©\;\;\;\;}\\{2x+y-3=0\;\;\;£¨2£©\;\;\;\;\;\;}\end{array}}$£¬
ÓÉ£¨1£©µÃ£ºx=4+2y¢Û£¬
°Ñ£¨3£©´úÈ루2£©µÃ£º2£¨4+2y£©+y-3=0£¬
½âµÃy=-1£¬
°Ñy=-1´úÈ루3£©µÃx=2£¬
ËùÒÔ·½³Ì×éµÄ½âΪ$\left\{{\begin{array}{l}{x=2}\\{y=-1}\end{array}}\right.$£»
£¨2£©$\left\{\begin{array}{l}3£¨{x-1}£©£¼5x+1£¬\;¢Ù\\ \frac{x-1}{2}¡Ý2x-4.\;\;\;¢Ú\end{array}\right.$
ÓÉ¢ÙµÃx£¾-2£¬
ÓÉ¢ÚµÃ$x¡Ü\frac{7}{3}$£¬
¡àÔ­²»µÈʽ×éµÄ½â¼¯ÊÇ$-2£¼x¡Ü\frac{7}{3}$£¬
¡àËüµÄ·Ç¸ºÕûÊý½âΪ0£¬1£¬2£»
£¨3£©Ô­Ê½=-$\frac{£¨a-b£©£¨a+b£©}{a£¨a-b£©}$¡Â$\frac{{a}^{2}+2ab+{b}^{2}}{a}$•$\frac{a+b}{ab}$
=-$\frac{£¨a+b£©£¨a-b£©}{a£¨a-b£©}$•$\frac{a}{£¨a+b£©^{2}}$•$\frac{a+b}{ab}$
=-$\frac{1}{ab}$£¬
¡ßa=2+2¡Á$\frac{\sqrt{3}}{2}$=2+$\sqrt{3}$£¬b=2¡Á1-$\sqrt{3}$=2-$\sqrt{3}$£¬
¡àԭʽ=-$\frac{1}{£¨2+\sqrt{3}£©£¨2-\sqrt{3}£©}$=-$\frac{1}{4-3}$=-1£®

µãÆÀ ±¾Ì⿼²éÁË·ÖʽµÄ»¯¼òÇóÖµ£ºÏȰѷÖʽ»¯¼òºó£¬ÔÙ°Ñ·ÖʽÖÐδ֪Êý¶ÔÓ¦µÄÖµ´úÈëÇó³ö·ÖʽµÄÖµ£®ÔÚ»¯¼òµÄ¹ý³ÌÖÐҪעÒâÔËËã˳ÐòºÍ·ÖʽµÄ»¯¼ò£®»¯¼òµÄ×îºó½á¹û·Ö×Ó¡¢·ÖĸҪ½øÐÐÔ¼·Ö£¬×¢ÒâÔËËãµÄ½á¹ûÒª»¯³É×î¼ò·Öʽ»òÕûʽ£®Ò²¿¼²éÁ˽â¶þÔªÒ»´Î·½³Ì×éºÍʵÊýµÄÔËË㣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãP£¨-2£¬5£©ÔÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª£ºÈçͼ£¬Rt¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬AB=AC£¬DÊÇBCµÄÖе㣬AE=BF£®
£¨1£©ÇóÖ¤£ºDE=DF£»
£¨2£©ÈôBC=8£¬ÇóËıßÐÎAFDEµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÒÑÖª¡ÏEFD=¡ÏBCA£¬BC=EF£¬AF=DC£¬ÔòAB=DE£®Çëͨ¹ýÍê³ÉÒÔÏÂÌî¿ÕµÄÐÎʽ˵Ã÷ÀíÓÉ£®
Ö¤Ã÷£º¡ßAF=DC£¨ÒÑÖª£©
¡àAF+FC=DC+FC£¨µÈʽµÄÐÔÖÊ£©
¼´AC=DF
ÔÚ¡÷ABCºÍ¡÷DEFÖÐ
BC=EF£¨ÒÑÖª£©
¡ÏBCA=¡ÏEFD£¨ÒÑÖª£©
AC=DF£¨ÒÑÖ¤£©
¡à¡÷ABC¡Õ¡÷DEF £¨SAS£©
¡àAB=DE  £¨È«µÈÈý½ÇÐεĶÔÓ¦±ßÏàµÈ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªµãP£¨a£¬b£©ÔÚÖ±Ïßy=-x+8ÉÏ£¬ÇÒ$\sqrt{ab-15}$=0£¬ÔòµãPµ½Ô­µãOµÄ¾àÀëµÈÓÚ$\sqrt{34}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®µ¥ÏîʽxµÄϵÊýºÍ´ÎÊý¶¼ÊÇ1
B£®$\frac{1}{2}$²»Êǵ¥Ïîʽ
C£®¶àÏîʽ3x2y+2xy-3x+yÖÐÒ»´ÎÏîµÄϵÊý·Ö±ðÊÇ-3£¬1
D£®-$\frac{2xy}{3}$ÊÇϵÊýΪ-$\frac{2}{3}$µÄ¶þ´Îµ¥Ïîʽ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èôx£¬yΪʵÊý£¬ÇÒÂú×ã|x-3|+$\sqrt{y+3}$=0£®
£¨1£©Èç¹ûʵÊýx£¬y¶ÔÓ¦ÎªÆ½ÃæÖ±½Ç×ø±êϵÉϵĵãA£¨x£¬y£©£¬ÔòµãAÔÚµÚ¼¸ÏóÏÞ£¿
£¨2£©Çó£¨$\frac{x}{y}$£©2015µÄÖµ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®½â·½³Ì×飺$\left\{\begin{array}{l}{5x-3y=-3}\\{\frac{2x}{3}+\frac{y}{2}=2}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®´´½¨ÎÄÃ÷³ÇÊУ¬ÈËÈ˲ÎÓ룬ÈËÈ˹²½¨£®ÎÒÊи÷У»ý¼«²ÎÓë´´½¨»î¶¯£¬×Ô·¢×é֯ѧÉú×ßÉϽÖÍ·£¬¿ªÕ¹ÎÄÃ÷Ȱµ¼»î¶¯£®Ä³ÖÐѧ¾Å£¨Ò»£©°àΪ´Ë´Î»î¶¯ÖÆ×÷ÁË´óС¡¢ÐÎ×´¡¢Öʵصȶ¼ÏàͬµÄ¡°ÎÄÃ÷Ȱµ¼Ô±¡±ÐØÕº͡°ÎÄÃ÷¼à¶½¸Ú¡±ÐØÕÂÈô¸É£¬·ÅÈ벻͸Ã÷µÄºÐÖУ¬´Ëʱ´ÓºÐÖÐËæ»úÈ¡³ö¡°ÎÄÃ÷Ȱµ¼Ô±¡±ÐØÕµĸÅÂÊΪ$\frac{1}{3}$£»Èô°à³¤´ÓºÐÖÐÈ¡³ö¡°ÎÄÃ÷Ȱµ¼Ô±¡±ÐØÕÂ3Ö»¡¢¡°ÎÄÃ÷¼à¶½¸Ú¡±ÐØÕÂ7Ö»Ë͸ø¾Å£¨¶þ£©°àºó£¬ÕâÊ±Ëæ»úÈ¡³ö¡°ÎÄÃ÷Ȱµ¼Ô±¡±ÐØÕµĸÅÂÊΪ$\frac{2}{5}$£®
£¨1£©ÇëÄãÓÃËùѧ֪ʶ¼ÆË㣺¾Å£¨Ò»£©°àÖÆ×÷µÄ¡°ÎÄÃ÷Ȱµ¼Ô±¡±ÐØÕº͡°ÎÄÃ÷¼à¶½¸Ú¡±ÐØÕ¸÷ÓжàÉÙÖ»£¿
£¨2£©ÈôСÃ÷Ò»´Î´ÓºÐÄÚÊ£ÓàÐØÕÂÖÐÈÎÈ¡2Ö»£¬ÎÊÇ¡ÓС°ÎÄÃ÷Ȱµ¼Ô±¡±ÐØÕ¡¢¡°ÎÄÃ÷¼à¶½¸Ú¡±ÐØÕ¸÷1Ö»µÄ¸ÅÂÊÊǶàÉÙ£¿£¨ÓÃÁÐ±í·¨»òÊ÷״ͼ¼ÆË㣩

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸