精英家教网 > 初中数学 > 题目详情

【题目】某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.符合题意的组建方案有(  )种.

A. 1种 B. 2种 C. 3种 D. 4种

【答案】C

【解析】

设组建中型两类图书角x个、小型两类图书角(30-x)个,由于组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.若组建一个中型图书角的费用是860本,组建一个小型图书角的费用是570本,因此可以列出不等式组 , 解不等式组然后去整数即可求解.

解:设组建中型图书角x个,则组建小型图书角为(30-x)个.

由题意,得

化简得,

解这个不等式组,得18≤x≤20.
∵由于x只能取整数,
∴x的取值是18,19,20.
x=18时,30-x=12;当x=19时,30-x=11;当x=20时,30-x=10.
故有三种组建方案:
方案一,中型图书角18个,小型图书角12个;
方案二,中型图书角19个,小型图书角11个;
方案三,中型图书角20个,小型图书角10个.
故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(9)已知代数式(ax3)(2x4)x2b化简后,不含x2项和常数项.

(1)ab的值;

(2)(2ab)2(a2b)(a2b)3a(ab)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

(1)在这次调查中,一共调查了   名学生;

(2)补全条形统计图;

(3)若该校共有1500名学生,估计爱好运动的学生有   人;

(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,OA平分EOC

(1)若EOC=70°,求BOD的度数;

(2)若EOCEOD=2:3,求BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:

(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:
(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足 ,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;
(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG , SAGH分别表示四边形BCHG和△AGH的面积,试探究 的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图BAC 的角平分线与 BC 的垂直平分线交于点 D,DEAB, DFAC,垂足分别为 E,F. AB=10,AC=8, BE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.
(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若tan∠ADB= ,PA= AH,求BD的长;
(3)在(2)的条件下,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选取最关注的一个),根据调查结果绘制了两幅不完整的统计图,根据图中提供的信息,

解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整;并写出这次主题班会调查结果的众数是;中位数落在的区域是
(3)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“感恩”的人数.

查看答案和解析>>

同步练习册答案