精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,ABC的一边ABx轴上,∠ABC=90°,点C48)在第一象限内,ACy轴交于点E,抛物线经过AB两点,与y轴交于点D0,﹣6).

1)请直接写出抛物线的表达式;

2)点Px轴下方抛物线上一动点,设点P的横坐标为mPAC的面积为S,试求出Sm的函数关系式;

3)若点Mx轴正半轴上一点(不与点A重合),抛物线上是否存在点N,使∠CAN=MAN.若存在,请直接写出点N的坐标;若不存在,请说明理由.

【答案】(1);(2);(3)N

【解析】

1)先确定B40),再利用待定系数法求出抛物线解析式为y=
2)先利用待定系数法求得直线AC的解析式为y= ,作PQy轴交ACQ,设Pm),则Qm),则PQ= ,然后根据三角形面积公式,利用S=SPAQ+SPCQ计算即可;
3)如图2,当点Mx的正半轴,ANBCF,作FHACH,根据角平分线的性质得FH=FB,易得AH=AB=6,再利用∠ACB的余弦可求出CF=5,则F43),接着求出直线AF的解析式为y= x+1,于是通过解方程组N点坐标为(

1)∵BCx轴,点C48),
B40),
B40),D0-6)代入y=,解得

∴抛物线解析式为

2)设直线AC的解析式为y=px+q
A-20),C48)代入得,解得

∴直线AC的解析式为

如图1,作PQy轴交ACQ

,则Q

3)图2,当点Mx的正半轴,ANBCF,作FHACH,则FH=FB
易得AH=AB=6

F43),

易得直线AF的解析式为

解方程组

N点坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD的边BC的延长线上取一点E,在直线BC的同侧作一个以CE为底的等腰CEF,且满足∠B+F180°,则称三角形CEF为四边形ABCD伴随三角形

1)如图1,若CEF是正方形ABCD伴随三角

①连接AC,则∠ACF   

②若CE2BC,连接AECFH,求证:HCF的中点;

2)如图2,若CEF是菱形ABCD伴随三角形,∠B60°M是线段AE的中点,连接DMFM,猜想并证明DMFM的位置与数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠B60°AB2,把菱形ABCDBC的中点E顺时针旋转60°得到菱形A'B'C'D',其中点D的运动路径为,则图中阴影部分的面积为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球、排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.

请根据图表中提供的信息,解答下列问题:

(1)图表中m=________,n=________;

(2)若该校学生共有1000人,则该校参加羽毛球活动的人数约为________人;

(3)该班参加乒乓球活动的4位同学中,有3位男同学(分别用A,B,C表示)和1位女同学(用D表示),现准备从中选出两名同学参加双打比赛,用树状图或列表法求出恰好选出一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一组邻边相等的凸四边形叫做“准菱形”.利用该定义完成以下各题:

(1) 理解

填空:如图1,在四边形ABCD中,若     (填一种情况),则四边形ABCD是“准菱形”;

(2)应用

证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明)

(3) 拓展

如图2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BP方向平移得到△DEF,连接AD,BF,若平移后的四边形ABFD是“准菱形”,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,已知点的坐标为.

1)请用直尺(不带刻度)和圆规作一条直线,它与轴和轴的正半轴分别交于点和点,且关于直线对称.(作图不必写作法,但要保留作图痕迹.

2)请求出(1)中作出的直线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)【问题发现】

如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为   

(2)【拓展研究】

在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;

(3)【问题发现】

当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系xOy中的任意两点MN,给出如下定义:点M与点N的“折线距离”为:

例如:若点M(-11),点N(2,-2),则点M与点N的“折线距离”为:.根据以上定义,解决下列问题:

1)已知点P(3,-2).

①若点A(-2,-1),则d(PA)=

②若点B(b2),且d(PB)=5,则b=

③已知点Cm,n)是直线上的一个动点,且d(PC)<3,求m的取值范围.

2)⊙F的半径为1,圆心F的坐标为(0t),若⊙F上存在点E,使d(EO)=2,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).

月均用水量(单位:t)

频数

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;

(2)如果家庭月均用水量大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?

(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

同步练习册答案