已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,添加一个条件:____________,
可以得到DF=BE,DF∥BE.证明你的判断.
![]()
科目:初中数学 来源:2015届河北省唐山市八年级下学期期末考数学试卷(解析版) 题型:选择题
坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离为到x轴距离的2倍.若A点在第二象限,则A点坐标为( )
A.(﹣3,6) B.(﹣3,2) C.(﹣6,3) D.(﹣2,3)
查看答案和解析>>
科目:初中数学 来源:2015届江西省九年级上学期入学考试数学试卷(解析版) 题型:解答题
已知关于x的方程x2+ax+a﹣2=0.若该方程的一个根为1,求a的值及该方程的另一根.
查看答案和解析>>
科目:初中数学 来源:2015届江西省九年级上学期入学考试数学试卷(解析版) 题型:选择题
如图,将
沿
折叠,使点
与
边的中点
重合,下列结论中正确的是( ).
![]()
A.
且![]()
B.![]()
C.
·DE
D.
,
查看答案和解析>>
科目:初中数学 来源:2015届江西省八年级下学期第一次月考数学试卷(解析版) 题型:填空题
在Rt△ABC中,∠C=900,BD平分∠ABC,CD=n,AB=m,则△ABD的面积是 .
查看答案和解析>>
科目:初中数学 来源:2015届江苏省八年级下学期期中联考数学试卷(解析版) 题型:解答题
如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).
(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,并说明理由;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并并说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com