精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=AC,CD⊥AB于D,那么∠A与∠BCD的数量关系是________.

∠A=2∠BCD
分析:过点A作AE⊥BC于E,根据等腰三角形三线合一的性质可得∠BAC=2∠BAE,再根据同角的余角相等求出∠BCD=∠BAE,从而得解.
解答:解:如图,过点A作AE⊥BC于E,
∵AB=AC,
∴∠BAC=2∠BAE,
∠BAE+∠B=90°,
∵CD⊥AB,
∴∠BCD+∠B=90°,
∴∠BCD=∠BAE,
∴∠BAC=2∠BCD,
即∠A=2∠BCD.
故答案为:∠A=2∠BCD.
点评:本题主要考查了等腰三角形三线合一的性质,同角的余角相等的性质,熟记性质并作出辅助线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案