【题目】(1)操作发现:如图1,D是等边三角形ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边三角形DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.
(2)类比猜想:如图2,当动点D运动到等边三角形ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?如果成立,请证明;如果不成立,是否有新的结论?如果有新的结论,直接写出新的结论,不需证明.
(3)深入探究:①如图3,当动点D在等边三角形ABC的边BA上运动时(点D与点B不重合),连接DC,以DC为边在其上方、下方分别作等边三角形DCF和等边三角形DCF',连接AF,BF′.探究AF,BF′与AB有何数量关系?并证明你发现的结论。
②如图4,当动点D在等边三角形ABC的边BA的延长线上运动时,其他作法与图3相同,①中的结论是否仍然成立?如果成立,请证明;如果不成立,是否有新的结论?如果有新的结论,直接写出新的结论,不需证明.
【答案】(1)BD=AF,理由见解析;(2)成立,BD=AF,理由见解析;(3)①AB=AF+BF',理由见解析;②不成立,新结论为AB=AF-BF',理由见解析
【解析】
(1)证明△BCD≌△ACF即可解题;
(2)证明△BCD≌△ACF即可解题;
(3)①证明△BCD≌△ACF和△BCF'≌△ACD可得BD=AF和AD=BF'即可解题;
②证明△BCD≌△ACF和△BCF'≌△ACD可得BD=AF和AD=BF'即可证明新结论.
(1)∵∠BCA=∠DCF,
∴∠BCD=∠ACF,
在△BCD和△ACF中,
BC=AC,∠BCD=∠ACF,CF=CD,
∴△BCD≌△ACF,(SAS),
∴BD=AF;
(2)∵∠BCA=∠DCF,
∴∠BCD=∠ACF,
在△BCD和△ACF中,
BC=AC,∠BCD=∠ACF,CF=CD,
∴△BCD≌△ACF(SAS),
∴BD=AF;
(3)①∵∠BCA=∠DCF,
∴∠BCD=∠ACF,
在△BCD和△ACF中,
BC=AC,∠BCD=∠ACF,CF=CD,
∴△BCD≌△ACF(SAS),
∴BD=AF
∵∠BCA=∠DCF',
∴∠BCF'=∠ACD,
在△BCF'和△ACD中,
BC=AC,∠ACD=∠BCF,′CD=CF′,
∴△BCF'≌△ACD(SAS),
∴AD=BF',
∴AB=AF+BF';
②不成立,新结论为AB=AF-BF'.
证明∵∠BCA=∠DCF,
∴∠BCD=∠ACF,
在△BCD和△ACF中,
BC=AC,∠BCD=∠ACF,CF=CD,
∴△BCD≌△ACF(SAS),
∴BD=AF;
∵∠BCA=∠DCF',
∴∠BCF'=∠ACD,
在△BCF'和△ACD中,
BC=AC,∠ACD=∠BCF′,CD=CF′,
∴△BCF'≌△ACD(SAS),
∴AD=BF',
∴AB=AF-BF'.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC.
(1)如果∠B+∠C=120°,则∠AED的度数=______.(直接写出结果)
(2)根据⑴的结论,猜想∠B+∠C与∠AED之间的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;
(1)直接写出图中∠AOC的对顶角为 ,∠BOE的邻补角为 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知点是线段的中点,过点作的垂线,在射线上有一个动点(点不与端点重合),连接,过点作的垂线,垂足为点,在射线上取点,使得,已知
(1)当时,求的度数;
(2)过点作垂直于直线交于点,在点的运动过程中,的大小随点的运动而变化,在这个变化过程中线段的长度是否发生变化?若不变,求出的长;若变化,请说明理由;
(3)如图2,当时,设直线与直线相交于点,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列能判定AB∥CD的条件有( )个.
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形中,是边上一点,点从出发以秒的速度沿线段运动,同时点从出发,沿线段、射线运动,当运动到,两点都停止运动.设运动时间为(秒):
(1)当与的速度相同,且时,求证:
(2)当与的速度不同,且分别在上运动时(如图1),若与全等,求此时的速度和值;
(3)当运动到上,运动到射线上(如图2),若的速度为秒,是否存在恰当的边的长,使在运动过程中某一时刻刚好与全等,若存在,请求出此时的值和边的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.
(1)△BDO是等腰三角形吗?请说明理由.
(2)若AB=10,AC=6,求△ADE的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com