精英家教网 > 初中数学 > 题目详情

△ABC中,∠A=60°,∠B,∠C的平分线BE,CF相交于O.下列结论正确的有_____个
①∠EOC=60°;②OE=OF;③BC=BF;④BC=BE=CF.


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
B
分析:①根据三角形的内角和定理求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB,然后利用三角形的内角和定理计算即可得解;
②截取CD=CE,利用“边角边”证明△CEO和△CDO全等,根据全等三角形对应角相等可得∠COE=∠COD,全等三角形对应边相等可得OE=OD,然后求出∠BOF=∠BOD=60°,再利用“角边角”证明△BOD和△BOF全等,根据全等三角形对应边相等可得OD=OF,从而得到OE=OF;
③根据全等三角形对应边相等可得BF=BD,从而判断本小题错误;
④假设BE=CF成立,可以求出OB=OC,根据等边对等角可得∠OBC=∠OCB,然后求出∠ABC=∠ACB,此条件无法得到,从而判定本小题错误.
解答:①∵∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵∠B,∠C的平分线BE,CF相交于O,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=×120°=60°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-60°=120°,
∠EOC=180°-∠BOC=180°-120°=60°,故本小题正确;
②如图,截取CD=CE,
∵CF是∠ACB的平分线,
∴∠ECO=∠DCO,
在△CEO和△CDO中,

∴△CEO≌△CDO(SAS),
∴∠COE=∠COD=60°,OE=OD,
∵∠BOC=120°(已证),
∴∠BOD=120°-60°=60°,
又∵∠BOF=∠COE=60°,
∴∠BOF=∠BOD=60°,
∵BE是∠ABC的平分线,
∴∠FBO=∠DBO,
在△BOD和△BOF中,

∴△BOD≌△BOF(ASA),
∴OD=OF,
∴OE=OF,故本小题正确;
③∵△BOD≌△BOF,
∴BF=BD,
∴BC=BF错误,故本小题错误;
④假设BE=CF成立,∵OE=OF,
∴BE-OE=BF-OF,
即OB=OC,
∴∠OBC=∠OCB,
∵∠B,∠C的平分线BE,CF相交于O,
∴∠ABC=∠ACB,
此条件无法求出,所以假设不成立,故本小题错误.
综上所述,正确的是①②共2个.
故选B.
点评:本题考查了角平分线的性质,全等三角形的判定与性质,三角形的内角和定理,作辅助线构造出全等三角形是解题的关键,要注意整体思想的利用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,DE∥BC,DE与AB相交于D,与AC相交于E,若AC=8,EC=3,DB=4,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,若∠B=60°,b=30,则a+c=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=2,AB=3,D是AC上一点,E是AB上一点,且∠ADE=∠B,设AD=x,AE=y,则y与x之间的函数关系式是(  )
A、y=
3
2
x(0<x<2)
B、y=
3
2
x(0<x≤2)
C、y=
2
3
x(0<x≤2)
D、y=
2
3
x(0<x<2)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=8,AC=6,BC=7,点D在AC上,AD=2,
(1)过点D画直线,使它截△ABC的两边所得的小三角形与△ABC相似(图形备用,标出与∠B相等的角);
(2)若截线与AB交于E,求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、在△ABC中,AB=3,BC=8,则AC的取值范围是
5<AC<11

查看答案和解析>>

同步练习册答案