【题目】某商店经销甲、乙两种商品. 现有如下信息:
请根据以上信息,解答下列问题:
(1)甲、乙两种商品的零售单价分别为 元和 元.(直接写出答案)
(2)该商店平均每天卖出甲商品500件和乙商品1200件.经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件.为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降x(x>0)元.在不考虑其他因素的条件下,当x定为多少时,才能使商店每天销售甲、乙两种商品获取的利润共1700元?
【答案】(1)2,3;(2)0.5元
【解析】
(1)根据图上信息可以得出甲乙商品之间价格之间的等量关系,即可得出方程组求出即可;
(2)根据降价后甲每天卖出:(500+×100)件,每件降价后每件利润为:(1-x)元,即可得出总利润,利用一元二次方程解法求出即可
(1) 解:(1)假设甲、乙两种商品的进货单价各为a,b元,
根据题意得:,解得:,
∴甲零售单价为1+1=2元,乙零售单价为2×2-1=3元,
故答案为:2,3;
(2)(1x)(500+x)+1×1200=1700 即2x2-x=0,
解得x=0.5或x=0(舍去),
所以当x定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1700元.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图像与轴交于两点,与轴交于点,其顶点为,连接,过点作轴的垂线.
(1)求点的坐标;
(2)直线上是否存在点,使的面积等于的面积的3倍?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一场篮球比赛中,一名球员在关键时刻投出一球,已知球出手时离地面高2米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,已知篮球运行的轨迹为抛物线,篮圈中心距离地面3.19米.
(1)以地面为x轴,篮球出手时垂直地面所在直线为y轴建立平面直角坐标系,求篮球运行的抛物线轨迹的解析式;
(2)通过计算,判断这个球员能否投中?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)已知:ABCD的两边AB,AD的长是关于x的方程的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么ABCD的周长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.
请你根据以上数据,计算舍利塔的高度AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).
(1)画出△ABC关于x对称的△A1B1C1;
(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并求出△A2B2C2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)图①中的值为 ;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两棵树(大树和小树)在一盏路灯下的影子如图所示
(1)确定路灯灯泡的位置(用点P表示)和表示婷婷的影长的线段(用线段AB表示).
(2)若小树高为2m,影长为4m;婷婷高1.5m,影长为4.5米,且婷婷距离小树10米,试求出路灯灯泡的高度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com