| A. | 20 | B. | 14 | C. | 13 | D. | 12 |
分析 根据AB=AC,可知△ABC为等腰三角形,由等腰三角形三线合一的性质可得AD⊥BC,AD为△ABC的中线,故CD=$\frac{1}{2}$BC,∠ADC=90°,又因为点E为AC的中点,可得DE=$\frac{1}{2}BC$,从而可以得到△CDE的周长.
解答 解:∵AB=AC,
∴△ABC是等腰三角形.
又∵AD平分∠BAC,
∴AD⊥BC,AD是△ABC的中线,点E为AC的中点.
∴∠ADC=90°,AC=2DE,AE=EC.
∵AB=AC=10,BC=8,
∴DE=5,CD=4,CE=5.
∴△CDE的周长为:DE+EC+CD=5+5+4=14.
故选项A错误,故选项B正确,故选项C错误,故选项D错误.
故选B.
点评 本题考查三角形的周长,等腰三角形的相关性质,直角三角形斜边上的中线等于斜边的一半,关键是正确分析题目,从中得出需要的信息.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 48cm2 | B. | 24cm2 | C. | 16cm2 | D. | 11cm2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x>-4 | B. | x<-4 | C. | x≠-4 | D. | x>0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com