6£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖª¾ØÐÎABCDµÄÈý¸ö¶¥µãB£¨4£¬0£©¡¢C£¨8£¬0£©¡¢D£¨8£¬8£©£®Å×ÎïÏßy=ax2+bx¹ýA¡¢CÁ½µã£®
£¨1£©Ö±½Óд³öµãAµÄ×ø±ê£¬²¢Çó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¶¯µãP´ÓµãA³ö·¢£®ÑØÏß¶ÎABÏòÖÕµãBÔ˶¯£¬Í¬Ê±µãQ´ÓµãC³ö·¢£¬ÑØÏß¶ÎCDÏòÖÕµãDÔ˶¯£®ËٶȾùΪÿÃë1¸öµ¥Î»³¤¶È£¬Ô˶¯Ê±¼äΪtÃ룮¹ýµãP×÷PE¡ÍAB½»ACÓÚµãE£®
¢Ù¹ýµãE×÷EF¡ÍADÓÚµãF£¬½»Å×ÎïÏßÓÚµãG£®µ±µãPµ½Ïß¶ÎACµÄ¾àÀëΪ1ʱ£¬ÇóPEºÍEGµÄ³¤£®
¢ÚÁ¬½ÓEQ£®ÔÚµãP¡¢QÔ˶¯µÄ¹ý³ÌÖУ¬½«¡÷ECQÑØ×Åij±ß·­Õۺ󣬵ÚÈý¸ö¶¥µãµÄ¶ÔÓ¦µã¼ÇΪM£¬ÈôµãE¡¢C¡¢Q¡¢M¹¹³ÉµÄËıßÐÎÊÇÁâÐÎʱ£¬Çó³öMµãµÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾Ý¾ØÐεÄÐÔÖÊ£¬¿ÉµÃAµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃAHµÄ³¤£¬¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃAPµÄ³¤£¬¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃEµã×ø±ê£¬Gµã×ø±ê£¬¸ù¾ÝƽÐÐÓÚxÖáÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊǽϴóµÄºá×ø±ê¼õ½ÏСµÄºá×ø±ê£¬¿ÉµÃPE£¬¸ù¾ÝƽÐÐÓÚyÖáµÄÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊǽϴóµÄ×Ý×ø±ê¼õ½ÏСµÄ×Ý×ø±ê£¬¿ÉµÃGHµÄ³¤£»
£¨3£©¸ù¾ÝÁâÐεÄÁÚ±ßÏàµÈ£¬¿ÉµÃtµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃE¡¢QµãµÄ×ø±ê£¬¸ù¾ÝÁâÐÎÒ»×é¶Ô½Ç¶¥µãµÄºá×ø±êµÄºÍµÈÓÚÁíÒ»×é¶Ô½Ç¶¥µãµÄºá×ø±êµÄºÍ£¬ÁâÐÎÒ»×é¶Ô½Ç¶¥µãµÄ×Ý×ø±êµÄºÍµÈÓÚÁíÒ»×é¶Ô½Ç¶¥µãµÄ×Ý×ø±êµÄºÍ£¬¿ÉµÃMµãµÄ×ø±ê£®

½â´ð ½â£º£¨1£©ÒòΪµãBµÄºá×ø±êΪ4£¬µãDµÄ×Ý×ø±êΪ8£¬AD¡ÎxÖᣬAB¡ÎyÖᣬ
ËùÒÔµãAµÄ×ø±êΪ£¨4£¬8£©£®
½«A£¨4£¬8£©¡¢C£¨8£¬0£©Á½µã×ø±ê·Ö±ð´úÈëy=ax2+bx£¬µÃ
$\left\{\begin{array}{l}{16a+4b=8}\\{64a+b8=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=4}\end{array}\right.$£®
¹ÊÅ×ÎïÏߵĽâÎöʽΪ£ºy=-$\frac{1}{2}$x2+4x£»

£¨2£©¢ÙÈçͼ1£º

¡÷APH¡×¡÷ACB£¬
$\frac{PH}{BC}$=$\frac{AH}{AB}$£¬AH=$\frac{1¡Á8}{4}$=2£¬
ÔÚRt¡÷APHÖУ¬Óɹ´¹É¶¨Àí£¬µÃ
AP=$\sqrt{A{H}^{2}+P{H}^{2}}$=$\sqrt{5}$£¬¼´P£¨4£¬8-$\sqrt{5}$£©£®
ACµÄ½âÎöʽΪy=-2x+16£¬
µ±y=8-$\sqrt{5}$ʱ£¬-2x+16=8-$\sqrt{5}$£¬½âµÃx=$\frac{\sqrt{5}}{2}$+4£¬
¼´E£¨$\frac{\sqrt{5}}{2}$+4£¬8-$\sqrt{5}$£©£®
PE=xE-xP=$\frac{\sqrt{5}}{2}$+4-4=$\frac{\sqrt{5}}{2}$£»
µ±x=$\frac{\sqrt{5}}{2}$+4ʱ£¬y=-$\frac{1}{2}$¡Á£¨$\frac{\sqrt{5}}{2}$+4£©2+4¡Á£¨$\frac{\sqrt{5}}{2}$+4£©=$\frac{27}{4}$£¬
¼´G£¨4+$\frac{\sqrt{5}}{2}$£¬$\frac{27}{4}$£©£®
EG=G-yp=$\frac{27}{4}$-£¨8-$\sqrt{5}$£©=$\sqrt{5}$-$\frac{5}{4}$£»
PEµÄ³¤Îª$\frac{\sqrt{5}}{2}$£¬EGµÄ³¤Îª$\sqrt{5}$-$\frac{5}{4}$£»
¢Ú¡ßQ£¨8£¬t£©£¬E£¨4+$\frac{1}{2}$t£¬8-t£©£¬C£¨8£¬0£©£¬
¡àEQ2=£¨$\frac{1}{2}$t-4£©2+£¨8-2t£©2£¬QC2=t2£¬EC2=£¨4+$\frac{1}{2}$t-8£©2+£¨8-t£©2£®
ËıßÐÎCEQMΪÁâÐÎʱ£¬·ÖÈýÖÖÇé¿ö£º
£¨¢ñ£©ÒÔECΪ¶Ô½ÇÏßʱ£¬µÃEQ=QC£¬¼´£¨$\frac{1}{2}$t-4£©2+£¨8-2t£©2=t2£¬
ÕûÀíµÃ13t2-144t+320=0£¬
½âµÃt=$\frac{40}{13}$»òt=$\frac{104}{13}$=8£¨´ËʱE¡¢CÖØºÏ£¬²»Äܹ¹³ÉÈý½ÇÐΣ¬ÉáÈ¥£©£»
QµãµÄ×ø±êΪ£¨8£¬$\frac{40}{13}$£©£¬EµãµÄ×ø±êΪ£¨$\frac{72}{13}$£¬$\frac{64}{13}$£©Cµã×ø±ê£¨8£¬0£©£¬
xM=xE+xC-xQ=$\frac{72}{13}$+8-8=$\frac{72}{13}$£¬yM=yE+yC-yQ=$\frac{64}{13}$+0-$\frac{40}{13}$=$\frac{24}{13}$£¬
M1£¨$\frac{72}{13}$£¬$\frac{24}{13}$£©£»
£¨¢ò£©ÒÔEQΪ¶Ô½ÇÏßʱ£¬µÃEC=CQ£¬¼´£¨4+$\frac{1}{2}$t-8£©2+£¨8-t£©2=t2£¬
ÕûÀíµÃt2-80t+320=0£¬
½âµÃt=40-16$\sqrt{5}$£¬t=40+16$\sqrt{5}$£¾8£¨´ËʱQ²»ÔÚ¾ØÐεıßÉÏ£¬ÉáÈ¥£©£¬
QµãµÄ×ø±êΪ£¨8£¬40-16$\sqrt{5}$£©£¬EµãµÄ×ø±êΪ£¨24-8$\sqrt{5}$£¬16$\sqrt{5}$-32£©£¬Cµã×ø±ê£¨8£¬0£©£¬
xM=xE+xQ-xC=24-8$\sqrt{5}$+8-8=24-8$\sqrt{5}$£¬yM=yE+yQ-yC=16$\sqrt{5}$-32+40-16$\sqrt{5}$-0=8£¬
¼´M2£¨24-8$\sqrt{5}$£¬8£©£»
£¨¢ó£©ÒÔCQΪ¶Ô½ÇÏßʱ£¬µÃEQ=EC£¬¼´£¨$\frac{1}{2}$t-4£©2+£¨8-2t£©2=£¨4+$\frac{1}{2}$t-8£©2+£¨8-t£©2£¬
½âµÃt=0£¨´ËʱQ¡¢CÖØºÏ£¬²»Äܹ¹³ÉÈý½ÇÐΣ¬ÉáÈ¥£©»òt=$\frac{16}{3}$£¬
QµãµÄ×ø±êΪ£¨8£¬$\frac{16}{3}$£©£¬EµãµÄ×ø±êΪ£¨$\frac{20}{3}$£¬$\frac{8}{3}$£©Cµã×ø±ê£¨8£¬0£©£¬
xM=xC+xQ-xE=8+8-$\frac{20}{3}$=$\frac{28}{3}$£¬yM=yC+yQ-yE=0+$\frac{16}{3}$-$\frac{8}{3}$=$\frac{8}{3}$
M3£¨$\frac{28}{3}$£¬$\frac{8}{3}$£©£®
×ÛÉÏËùÊö£ºµãE¡¢C¡¢Q¡¢M¹¹³ÉµÄËıßÐÎÊÇÁâÐÎʱ£¬MµãµÄ×ø±êM1£¨$\frac{72}{13}$£¬$\frac{24}{13}$£©£¬M2£¨24-8$\sqrt{5}$£¬8£©£¬M3£¨$\frac{28}{3}$£¬$\frac{8}{3}$£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓÃÁ˾ØÐεÄÐÔÖÊ£¬´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»ÀûÓÃÁËÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬¹´¹É¶¨Àí£¬ÀûÓÃÆ½ÐÐÓÚ×ø±êÖáÁ½µã¼äµÄ¾àÀ빫ʽÊǽâÌâ¹Ø¼ü£»ÀûÓÃÁâÐεÄÁÚ±ßÏàµÈµÄ³ö¹ØÓÚtµÄ·½³ÌÊǽâÌâ¹Ø¼ü£¬ÓÖÀûÓÃÁËÁâÐεÄÐÔÖÊ£ºÁâÐÎÒ»×é¶Ô½Ç¶¥µãµÄºá×ø±êµÄºÍµÈÓÚÁíÒ»×é¶Ô½Ç¶¥µãµÄºá×ø±êµÄºÍ£¬ÁâÐÎÒ»×é¶Ô½Ç¶¥µãµÄ×Ý×ø±êµÄºÍµÈÓÚÁíÒ»×é¶Ô½Ç¶¥µãµÄ×Ý×ø±êµÄºÍ£¬Òª·ÖÀàÌÖÂÛ£¬ÒÔ·ÀÒÅ©£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÈçͼËùʾ£¬ÔÚ¡ÑOÖУ¬ÏÒAD¡ÎÏÒBC£¬¡ÏBAD=40¡ã£¬Çó¡ÏAOCµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®½â·½³Ì£º$\frac{2}{3}$x+$\frac{1}{2}$x=44.4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®²»¸Ä±ä·ÖʽµÄÖµ£¬ÏÂÁзÖʽµÄ·Ö×Ó¡¢·ÖĸÖеÄϵÊý¶¼»¯ÎªÕûÊý£®
£¨1£©$\frac{2x+\frac{2}{5}y}{\frac{1}{3}x-y}$£»
£¨2£©$\frac{0.5a-1}{0.3a+2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ1£¬ËıßÐÎABCDÖУ¬AD¡ÎBC£¬AB¡ÍBC£¬µãEÔÚ±ßABÉÏ£¬¡ÏDEC=90¡ã£¬ÇÒDE=EC£®
£¨1£©ÇóÖ¤£º¡÷ADE¡Õ¡÷BEC£»
£¨2£©ÈôAD=a£¬AE=b£¬DE=c£¬ÇëÓÃͼ1Ö¤Ã÷¹´¹É¶¨Àí£ºa2+b2=c2£»
£¨3£©Ïß¶ÎABÉÏÁíÓÐÒ»µãF£¨²»ÓëµãEÖØºÏ£©£¬ÇÒDF¡ÍCF£¨Èçͼ2£©£¬ÈôAD=2£¬BC=4£¬ÇóEFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªRt¡÷ABCÖУ¬Ð±±ßAB=2£¬tanB=$\frac{4}{3}$£¬ÔòAC=$\frac{8}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÈçͼËùʾ£¬ÔÚÒ»³¡×ãÇòÈüÖУ¬Ò»ÇòÔ±´ÓÇòÃÅÕýǰ·½10m´¦½«ÇòÌ߯ðÉäÏòÇòÃÅ£¬µ±Çò·ÉÐеÄˮƽ¾àÀëÊÇ6mʱ£¬Çò´ïµ½×î¸ßµã£¬´ËʱÇò¸ß3m£¬½«ÇòµÄÔËÐзÏß¿´³ÉÊÇÒ»ÌõÅ×ÎïÏߣ¬ÈôÇòßßΪ2.44m£¬Ôò¸ÃÇòÔ±ÄÜÉäÖÐÇòÃÅ£¨Ìî¡°ÄÜ¡±»ò¡°²»ÄÜ¡±£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈôxµÄÏà·´ÊýÊÇ5£¬|y|=8£¬ÇÒx+y£¼0£¬ÄÇôx-yµÄÖµÊÇ£¨¡¡¡¡£©
A£®3B£®3»ò-13C£®-3»ò-13D£®-13

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èçͼ£¬ÔÚ¡÷ABCºÍ¡÷BDEÖУ¬µãCÔÚ±ßBDÉÏ£¬±ßAC½»±ßBEÓÚµãF£®ÈôAC=BD£¬AB=ED£¬BC=BE£¬¡ÏD=60¡ã£¬¡ÏABE=28¡ã£¬Ôò¡ÏACB=46¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸