精英家教网 > 初中数学 > 题目详情
8.如图所示,在⊙O中,弦AD∥弦BC,∠BAD=40°,求∠AOC的度数.

分析 首先根据平行线的性质可得∠ABC=∠DAB=40°,再根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.

解答 解:∵弦AD∥弦BC,
∴∠ABC=∠DAB=40°,
∴∠AOC=2×40°=80°.

点评 此题主要考查了圆周角定理和平行线的性质,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.在△ABC中,AB=AC,BD=AE,∠B=∠DEC,求证:AD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知x=$\sqrt{2+\sqrt{3}}$,y=$\sqrt{2-\sqrt{3}}$,则代数式x+y的值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.求值:
(1)($\sqrt{48}$-4$\sqrt{\frac{1}{8}}$)-(3$\sqrt{\frac{1}{3}}$-2$\sqrt{0.5}$);
(2)($\sqrt{2}$-$\sqrt{3}$)2+2$\sqrt{\frac{1}{3}}$×3$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.$\frac{x-2}{3}$是分式B.分式的分子为0,则分式的值为0
C.将式子(a+b)÷c写成分数的形式是a+$\frac{b}{c}$D.对于任意实数,$\frac{x}{1+{x}^{2}}$总有意义

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.不改变分式的值,使得分式的分子、分母的最高次项系数都为正数.
(1)$\frac{4-x}{-{x}^{2}+3x-1}$=$\frac{x-4}{{x}^{2}-3x+1}$;
(2)$\frac{4{x}^{2}-2+{x}^{3}}{-1+2x-2{x}^{2}}$=-$\frac{{x}^{3}+4{x}^{2}-2}{2{x}^{2}-2x+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.关于x的一元二次方程x2+2(m-1)x+m2=0的两个实数根为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是m≤$\frac{1}{2}$且m≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知∠AOC:∠BOC=1:4,OD平分∠AOB,且∠COD=36°,求∠AOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于点G.当点P到线段AC的距离为1时,求PE和EG的长.
②连接EQ.在点P、Q运动的过程中,将△ECQ沿着某边翻折后,第三个顶点的对应点记为M,若点E、C、Q、M构成的四边形是菱形时,求出M点的坐标.

查看答案和解析>>

同步练习册答案