精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.
光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.
(1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;
(2)当⊙O的半径为1时,如图3,
①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为;
②自点A(﹣1,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为
(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.

【答案】解:(1)答案如图:

(2)

①由题意:∠1=∠2,∠APB=90°,
∴∠1=45°,
∴反射光与切线的夹角为45°.
②由题意:这些反射点组成的多边形是正十二边形,
∴入射光线与反射光线夹角为150°,
∴∠AOP1=30°,∵OP1=1,
∴P1(﹣).
(3)如图:

当反射光PA∥X轴时,反射光线与坐标轴没有交点.
作PD⊥OC,PN⊥OM垂足分别为M,N,设PD=m.
∵∠GPO=∠HPA,∠GPC=∠HPC=90°,
∴∠OPC=∠APC=∠PCO,∴OP=OC,
在RT△PON中,∵ON=PD=m,PN2=1﹣(2﹣m)2
∴PO2=m2+1﹣(2﹣m)2
∵PD∥OM,∵,∴CP=
CD2=(2﹣m2
∴OC=ON+CD,
OC2=(+2
由:PO2=OC2得到:(2﹣m2=(+2
∴m1=2﹣,(m2=2+,m3=4,不合题意舍弃),
∴根据左右对称性得到:满足条件的反射点P的纵坐标:1
【解析】(1)(2)两个问题,要根据题意,画出图象,可以解决.
(3)当反射光线平行X轴时,反射光线与坐标轴没有交点,只要求出这样的反射点,就可以解决这个问题了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在平行四边形ABCD中,连接BD,AD=6cm,BD=8cm,∠DBC=90°,现将△AEF沿BD的方向匀速平移,速度为2cm/s,同时,点G从点D出发,沿DC的方向匀速移动,速度为2cm/s.当△AEF停止移动时,点G也停止运动,连接AD,AG,EG,过点E作EH⊥CD于点H,如图2所示,设△AEF的移动时间为t(s)(0<t<4).
(1)当t=1时,求EH的长度;
(2)若EG⊥AG,求证:EG2=AEHG;
(3)设△AGD的面积为y(cm2),当t为何值时,y可取得最大值,并求y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,O为坐标原点,点A的坐标为(1,a),点B的坐标为(b,1),点C的坐标为(c,0),其中a、b满足(a+b﹣8)2+|a﹣b+2|=0.

(1)求A、B两点的坐标;

(2)当ABC的面积为6时,求点C的坐标;

(3)当4≤SABC10时,求点C的横坐标c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的一条弦,且AB=4 . 点C,E分别在⊙O上,且OC⊥AB于点D,∠E=30°,连接OA.
(1)求OA的长;
(2)若AF是⊙O的另一条弦,且点O到AF的距离为2 , 直接写出∠BAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.
(1)求证:∠PCE=∠PEC;
(2)若AB=10,ED= , sinA= , 求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是( )

A. 3分时汽车的速度是40千米/

B. 12分时汽车的速度是0千米/

C. 从第3分到第6分,汽车行驶了120千米

D. 从第9分到第12分,汽车的速度从60千米/时减少到0千米/

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.
(1)求cos∠ADE的值;
(2)当DE=DC时,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,ABx轴,点A的坐标为(5,3),己知直线l:y= x﹣2

(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值

(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,O为坐标原点.已知反比例函数y=k0)的图象经过点A2m),过点AAB⊥x轴于点B,且△AOB的面积为

1)求km的值;

2)点Cxy)在反比例函数y=的图象上,求当1≤x≤3时函数值y的取值范围;

3)过原点O的直线l与反比例函数y=的图象交于PQ两点,试根据图象直接写出线段PQ长度的最小值.

查看答案和解析>>

同步练习册答案