精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,O为坐标原点.已知反比例函数y=k0)的图象经过点A2m),过点AAB⊥x轴于点B,且△AOB的面积为

1)求km的值;

2)点Cxy)在反比例函数y=的图象上,求当1≤x≤3时函数值y的取值范围;

3)过原点O的直线l与反比例函数y=的图象交于PQ两点,试根据图象直接写出线段PQ长度的最小值.

【答案】1m= k=12y≤132

【解析】试题分析:(1)根据三角形的面积公式先得到m的值,然后把点A的坐标代入y=,可求出k的值;

2)根据反比例函数得性质求解;

3PQ关于原点对称,则PQ=2OP,设Pa),根据勾股定理得到OP=,从而得到OP最小值为,于是可得到线段PQ长度的最小值.

试题解析:(1∵A2m),

∴OB=2AB=m

∴SAOB=OBAB=×2×m=

∴m=

A的坐标为(2),

A2)代入y=,得

∴k=1

2x=1时,y=1;当x=3时,y=

反比例函数y=,在x0时,yx的增大而减小,

1≤x≤3时,y的取值范围为≤y≤1

3)由图象可得:PQ关于原点对称,

∴PQ=2OP

反比例函数解析式为y=,设Pa),

∴OP=

∴OP最小值为

线段PQ长度的最小值为2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.
光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.
(1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;
(2)当⊙O的半径为1时,如图3,
①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为;
②自点A(﹣1,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为
(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两座城市的中心火车站A,B两站相距360 km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54 km/h,当动车到达B站时,特快列车恰好到达距离A135 km处的C站.求动车和特快列车的平均速度各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B﹣C﹣D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法错误的是(

A. AP=BP,则点P是线段的中点 B. 若点C在线段AB上,则AB=AC+BC

C. AC+BC>AB,则点C一定在线段AB D. 两点之间,线段最短

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,﹣1)、B(﹣1,1)、C(0,﹣2).

(1)点B关于坐标原点O对称的点的坐标为
(2)将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C;
(3)求过点B1的反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市今年中考体育测试,其中男生测试项目有1000米跑、立定跳远、掷实心球、一分钟跳绳、引体向上五个项目.考生须从这五个项目中选取三个项目,要求:1000米跑必选,立定跳远和掷实心球二选一,一分钟跳绳和引体向上二选一.
(1)写出男生在体育测试中所有可能选择的结果;
(2)请你用列表法或画树状图法,求出两名男生在体育测试中所选项目完全相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了庆祝校园艺术节,准备购买一批盆花布置校园.已知1A种花和2B种花一共需13,2A种花和1B种花一共需11.

(1)1A种花和1B种花的售价各是多少元?

(2)学校准备购进这两种盆花共100,并且A种盆花的数量不超过B种盆花数量的2,请求出A种盆花的数量最多是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰梯形OABC在平面直角坐标系中,如图A(1,2),B(3,2),C(4,0),则过点M(0,5)且把等腰梯形OABC面积分成相等两部分的直线解析式是

查看答案和解析>>

同步练习册答案