精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=x+b的图象与反比例函数y=的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA.

(1)求一次函数和反比例函数的解析式;
(2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.

【答案】
(1)

【解答】解:∵一次函数y=x+b的图象与x轴交于点C(﹣1,0),

∴﹣1+b=0,解得b=1,

∴一次函数的解析式为y=x+1,

∵一次函数y=x+1的图象过点B(﹣2,n),

∴n=﹣2+1=﹣1,

∴B(﹣2,﹣1).

∵反比例函数y=的图象过点B(﹣2,﹣1),

∴k=﹣2×(﹣1)=2,

∴反比例函数的解析式为y=


(2)

,解得,或

∵B(﹣2,﹣1),

∴A(1,2).

分两种情况:

①如果点P在x轴上,设点P的坐标为(x,0),

∵P1A=OA,

∴P1O=2OM,

∴点P1的坐标为(2,0);

②如果点P在y轴上,设点P的坐标为(0,y),

∵P2A=OA,

∴P2O=2NO,

∴点P的坐标为(0,4);

综上所述,所求点P的坐标为(2,0)或(0,4).


【解析】(1)把C(﹣1,0)代入y=x+b,求出b的值,得到一次函数的解析式;再求出B点坐标,然后将B点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;
(2)先将反比例函数与一次函数的解析式联立,求出A点坐标,再分①点P在x轴上;②点P在y轴上;两种情况进行讨论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,AO是角平分线,D为AO上一点,作△CDE,使DE=DC,∠EDC=∠BAC,连接BE.

(1)若∠BAC=60°,求证:△ACD≌△BCE;
(2)若∠BAC=90°,AD=DO,求 的值;
(3)若∠BAC=90°,F为BE中点,G为 BE延长线上一点,CF=CG,AD=nDO,直接写出 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,两个月的销售量的比是9:10,已知第一个月的销售额与第二个月的销售额相等,这两个月销售总额超过40万元.
(1)求第一个月每台彩电销售价格;
(2)这批彩电最少有多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E、F分别是AB、CD的中点.

(1)求证:四边形EBFD为平行四边形;
(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是(  )

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:

(1)如图①,若点P在线段AB上,且AC=1+ , PA= , 则:
①线段PB= ,PC=
②猜想:PA2 , PB2 , PQ2三者之间的数量关系为
(2)如图 , 若点PAB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图给出证明过程;
(3)若动点P满足 , 求的值.(提示:请利用备用图进行探求)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.

(1)求证:PE是⊙O的切线;
(2)求证:ED平分∠BEP;
(3)若⊙O的半径为5,CF=2EF,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据≈1.4,≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE:S△DCE=(  )

A.1:4
B.1:3
C.1:2
D.2:3

查看答案和解析>>

同步练习册答案