【题目】如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE:S△DCE=( )
A.1:4
B.1:3
C.1:2
D.2:3
【答案】B
【解析】解:∵在△ABC中,两条中线BE,CD相交于点O,
∴DE是△ABC的中位线,
∴△ODE∽△OCB,
∴,
∴,
∵△DOE与△DCE等高,
∴S△DOE:S△DCE=OD:CD=1:3.
故选B.
【考点精析】本题主要考查了三角形中位线定理和相似三角形的判定与性质的相关知识点,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+b的图象与反比例函数y=的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA.
(1)求一次函数和反比例函数的解析式;
(2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.
(1)求m、n的值并写出该反比例函数的解析式.
(2)点E在线段CD上,S△ABE=10,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.
(1)求证:FE⊥AB;
(2)当EF=6,时,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①当AE= cm时,四边形CEDF是矩形;
②当AE= cm时,四边形CEDF是菱形.
(直接写出答案,不需要说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A1 , A2 , A3…都在x轴上,点B1 , B2 , B3…都在直线y=x上,△OA1B1 , △B1A1A2 , △B2B1A2 , △B2A2A3 , △B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是( )
A.(22014 , 22014)
B.(22015 , 22015)
C.(22014 , 22015)
D.(22015 , 22014)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com