精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线

(1)此抛物线的顶点坐标是 ,与x轴的交点坐标是 ,与y轴交点坐标是 ,对称轴直线是
(2)在平面直角坐标系中画出 的图象;
(3)结合图象,说明当x取何值时,y随x的增大而减小.

【答案】
(1)(1,-4);(3,0);(-1,0);(0,-3);x=1
(2)


(3)

解:由图象可知当 x < 1时,y x 的增大而减小.


【解析】(1)∵ ,∴抛物线顶点坐标为(1,-4),对称轴为直线x=1;
令y=0,可得 ,解得x=3或-1,∴抛物线与x轴的交点坐标为(3,0)和(-1,0);
令x=0可得y=-3,∴抛物线与y轴的交点坐标为(0,-3),
故答案依次为(1,-4),(3,0),(-1,0),(0,-3),x=1.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精确到个位)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的顶点A、C在双曲线y1= 上,B、D在双曲线y2= 上,k1=2k2(k1>0),AB//y轴,SABCD=24,则k1=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+1经过点(2,6),且与直线 相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).

(1)求抛物线的解析式;
(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;
(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:20110+( 1+4sin45°﹣|﹣ |

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为(
A.
B. ﹣2
C.π﹣
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张矩形纸片ABCD,AD=5cm,AB=3cm,将纸片沿ED折叠,A点刚好落在BC边上的A'处,如图,这时AE的长应该是(
A. cm
B. cm
C. cm
D. cm

查看答案和解析>>

同步练习册答案