精英家教网 > 初中数学 > 题目详情

【题目】如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则 的值为( )

A.
B.
C.
D.

【答案】D
【解析】解:∵点O是△ABC的重心,
∴OC= CE,
∵△ABC是直角三角形,
∴CE=BE=AE,
∵∠B=30°,
∴∠FAE=∠B=30°,∠BAC=60°,
∴∠FAE=∠CAF=30°,△ACE是等边三角形,
∴CM= CE,
∴OM= CE﹣ CE= CE,即OM= AE,
∵BE=AE,
∴EF= AE,
∵EF⊥AB,
∴∠AFE=60°,
∴∠FEM=30°,
∴MF= EF,
∴MF= AE,
= =
故选:D.
【考点精析】认真审题,首先需要了解相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABD和△CEF都是斜边为2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E都在同一直线上,DC=4.

(1)求证:四边形ABFE是平行四边形.
(2)△ABD沿着BE的方向以每秒1cm的速度运动,设△ABD运动的时间为t秒,
①当t为何值时,ABFE是菱形?请说明你的理由.
ABFE有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴、y轴上,反比例函数y= (x>0)的图像经过点D,且与边BC交于点E,则点E的坐标为.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是( )

A.BC
B.CE
C.AD
D.AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x(x为非负整数).
(1)根据题意,填写下表:

一次复印页数(页)

5

10

20

30

甲复印店收费(元)

0.5

2

乙复印店收费(元)

0.6

2.4


(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1 , y2关于x的函数关系式;
(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.
(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?
(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)解方程: =
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展“阅读季”活动,小明调查了班级里40名同学计划购书的花费情况,并将结果绘制成如图所示的条形统计图,根据图中相关信息,这次调查获取的样本数据的众数和中位数分别是(
A.12和10
B.30和50
C.10和12
D.50和30.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是cm.

查看答案和解析>>

同步练习册答案