【题目】如图,数轴上两点A、B所表示的数分别为、,点M从点A出发以每秒1个单位长度的速度沿数轴向右运动,点N从点B出发以每秒2个单位长度的速度沿数轴向左运动
(1)填空:点A和点B间的距离为 ;
(2)若点M和点N同时出发,求点M和点N相遇时的位置所表示的数;
(3)若点N比点M迟3秒钟出发,则点M出发几秒时,点M和点N刚好相距6个单位长度?此时数轴上是否存在一点C,使它到点B、点M和点N这三点的距离之和最小?若存在,请直接写出点C所表示的数和这个最小值;若不存在,试说明理由.
【答案】(1)12;(2)点M和点N相遇时的位置所表示的数为2;(3)当点M出发4秒或8秒时,点M和点N刚好相距6个单位长度.此时数轴上存在一点C,使它到点B、点M和点N这三点的距离之和最小. 相遇前(),点C即为点N,所表示的数为8和这个最小值8;相遇后(),点C即为点M,所表示的数为6和这个最小值10.
【解析】
(1)利用两点之间的距离计算方法求得答案即可;
(2)设运动时间为t秒.利用数轴上点的平移规律求得运动后点M、N所表示的数即可;
(3)设点M出发x秒时,点M和点N刚好相距6个单位长度,则点N所用的时间为(x3)秒.分点M和点N相遇前后两种情况,列出方程解答即可.
(1)点A和点B间的距离为:10(2)=12.
故答案是:12;
(2)设经过秒点M和点N相遇,
依题意,得,
解得.
∴点M和点N相遇时的位置所表示的数为2.
(3)设点M出发秒时,点M和点N刚好相距6个单位长度,则点N所用的时间为()秒.
①点M和点N相遇前,依题意有:,
解得.
此时,点C即为点N(如图1所示),所表示的数为8和这个最小值8;
②点M和点N相遇后,依题意有:,
解得.
此时,点C即为点M(如图2所示),所表示的数为6和这个最小值10.
综上所述,当点M出发4秒或8秒时,点M和点N刚好相距6个单位长度.此时数轴上存在一点C,使它到点B、点M和点N这三点的距离之和最小. 相遇前(),点C即为点N,所表示的数为8和这个最小值8;相遇后(),点C即为点M,所表示的数为6和这个最小值10.
科目:初中数学 来源: 题型:
【题目】“综合与实践”学习活动准备制作一组三角形,记这些三角形分别为,用记号表示一个满足条件的三角形,如(2,4,4)表示边长分别为2,4,4个单位长度的一个三角形.
(1)若这些三角形三边的长度为大于0且小于3的整数个单位长度,请用记号写出所有满足条件的三角形;
(2)如图,是的中线,线段的长度分别为2个,6个单位长度,且线段的长度为整数个单位长度,过点作交的延长线于点.
①求的长度;
②请直接用记号表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】本学期学习了分式方程的解法,下面是晶晶同学的解题过程:
解方程
解:整理,得: …………………………第①步
去分母,得: …………………………第②步
移项,得: ……………………… 第③步
合并同类项,得: ……………………… 第④步
系数化1,得: …………………………第⑤步
检验:当时,
所以原方程的解是. ………………………第⑥步
上述晶晶的解题过程从第_____步开始出现错误,错误的原因是_________________.请你帮晶晶改正错误,写出完整的解题过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象经过点,且与正比例函数的图象相交于点.
(1)求m的值;
(2)求一次函数的解析式;
(3)求这两个函数图象与x轴所围成的三角形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按要求作答
(1)不用画图,请直接写出三角形ABC关于 x轴对称的图形三角形A1B1C1的三个顶点的坐标A1 B1 C1
(2)请画出三角形ABC关于y轴对称的三角形A’B’C’(其中 A’、B’、C’别是A、 B 、C 的对应点,不写作法)
(3)求三角形ABC的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,且垂足H在边AD上,连接AF.
(1)求证:FH=ED;
(2)设AE=x,是否存在某个x的值,使得△AEF的面积为3?若存在,求出x的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分9分)
根据要求,解答下列问题.
(1)根据要求,解答下列问题.
①方程x2-2x+1=0的解为________________________;
②方程x2-3x+2=0的解为________________________;
③方程x2-4x+3=0的解为________________________;
…… ……
(2)根据以上方程特征及其解的特征,请猜想:
①方程x2-9x+8=0的解为________________________;
②关于x的方程________________________的解为x1=1,x2=n.
(3)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com