【题目】如图所示,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,且垂足H在边AD上,连接AF.
(1)求证:FH=ED;
(2)设AE=x,是否存在某个x的值,使得△AEF的面积为3?若存在,求出x的值,若不存在,请说明理由.
【答案】(1)详见解析;(2)不存在这样的x使得△AEF的面积为3.
【解析】
根据题意可得∠FEH=∠DCE,CE=EF,然后证明△FEH≌△ECD即可得到所证,根据△AEF的面积为,再通过列方程解未知数即可得到存不存在这样的三角形.
(1)证明:∵四边形CEFG是正方形,
∴CE=EF,
∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,
∴∠FEH=∠DCE.
在△FEH和△ECD中,由AAS可证△FEH≌△ECD,
∴FH=ED.
(2)∵AE=x,则ED=FH=4﹣x,
∴S△AEF=AEFH=x(4﹣x)=﹣(x﹣2)2+2<3,
∴不存在这样的x使得△AEF的面积为3.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为( )
A. 4 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王欲开一家品牌服装店,向朋友借了元用于店面装修.已知该品牌服装进价为每件元,预测日销售量(件)与销售价(元/件)之间的关系如下:.
该店应支付员工的工资为每人每天元,每天还应支付其它费用为元(不包括借款).
若该店某天的销售价为元/件时,当天正好收支平衡(其中支出服装成本+员工工资+应支付其它费用),求该店员工的人数;
若该店只有名员工,设该服装店每天的毛利润为元,求与之间的函数关系式;(毛利润销售收入-服装成本-员工工资-应支付其它费用)
在的条件下,若每天毛利润全部用于还款,而所借款每天应按万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清借款?此时每件服装的价格应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上两点A、B所表示的数分别为、,点M从点A出发以每秒1个单位长度的速度沿数轴向右运动,点N从点B出发以每秒2个单位长度的速度沿数轴向左运动
(1)填空:点A和点B间的距离为 ;
(2)若点M和点N同时出发,求点M和点N相遇时的位置所表示的数;
(3)若点N比点M迟3秒钟出发,则点M出发几秒时,点M和点N刚好相距6个单位长度?此时数轴上是否存在一点C,使它到点B、点M和点N这三点的距离之和最小?若存在,请直接写出点C所表示的数和这个最小值;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知Rt△ABC, ∠C=90°,CD 是AB边上的高, AC=4cm,BC=3cm,以点C为圆心作⊙C,使A、B、D三点至少有一个在圆内,且至少有一个在圆外,则⊙C半径r范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某地有一座圆弧形的拱桥,桥下水面宽为8米(即AB=8米),拱顶高出水面为2米(即CD=2米).
(1)求这座拱桥所在圆的半径.
(2)现有一艘宽6米,船舱顶部为正方形并高出水面1.5米的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(一般)、C(不比较喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:
(1)本次调查的人数为多少人?A等级的人数是多少?请在图中补全条形统计图.
(2)图①中,a等于多少?D等级所占的圆心角为多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于、两点,直线与轴交于点,与轴交于点.点是抛物线上一动点,过点作直线轴于点,交直线于点.设点的横坐标为.
求抛物线的解析式;
若点在轴上方的抛物线上,当时,求点的坐标;
若点’是点关于直线的对称点,当点’落在轴上时,请直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com