精英家教网 > 初中数学 > 题目详情

【题目】瑞瑞有一个小正方体,6个面上分别画有平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形.抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是_____

【答案】

【解析】分析:抛掷这个正方体一次平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形出现的机会相同6个图形中既是轴对称图形又是中心对称图形的有圆和菱形两个由此即可得到结论

详解∵抛掷这个正方体一次平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形出现的机会相同6个图形中既是轴对称图形又是中心对称图形的有圆和菱形两个∴抛掷这个正方体一次向上一面的图形既是轴对称图形又是中心对称图形的概率是

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点C为半径OB上一点,过点CCDAB交半圆O于点D,将△ACD沿AD折叠得到△AEDAE交半圆于点F,连接DF

1)求证:DE是半圆的切线:

2)连接0D,当OC=BC时,判断四边形ODFA的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路 y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:

1)直接写出a的值,并求甲车的速度;

2)求图中线段EF所表示的yx的函数关系式,并直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 xOy 中,点 A 是一次函数 y 3x 20 y x 12的交点,过点 A 分别作 x y 轴的垂线段,垂足分别是 B C ,动点 P Q 1个单位/秒的速度,分别从点C B 出发,沿线段CA BO 方向,向终点 A O 运动,设运动时间为t.

1)证明:无论运动时间t 0 t 8取何值,四边形OPAQ 始终为平行四边形;

2)当四边形OPAQ 为菱形时,请求出此时 PQ 的长度及直线 PQ 的函数解析式;

3)当OP 满足 2 OP 5时,连接 PQ ,直线 PQ y 轴交于点 M ,取线段 AC 的中点 N ,试确定 MNP 的面积 S 与运动的时间t 之间的函数关系式,并求出 S 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个梯子AB2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了(  )米.

A. 0.5 B. 1 C. 1.5 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形ABCO的顶点O在坐标远点,点B的坐标为(1,4),点A在第二象限,反比例函数的图像经过点AK的值是()

A.-2B.-4C.-8D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.

1)四棱柱有   个面,   条棱,   个顶点;

2)六棱柱有   个面,   条棱,   个顶点;

3)由此猜想n棱柱有   个面,   条棱,   个顶点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平整的地面上,有若干个完全相同的棱长为1cm的小正方体堆成一个几何体,如图所示:

1)这个几何体是由   个小正方体组成,请画出从正面、左面、上面看到的这个几何体的形状图;

2)若现在你手头还有一些相同的小正方体,如果保持从上面和从左面看到的形状图不变,最多可以再添加________个小正方体.

查看答案和解析>>

同步练习册答案