精英家教网 > 初中数学 > 题目详情

【题目】如图,一人站在两等高的路灯之间走动,为人在路灯照射下的影子,为人在路灯照射下的影子.当人从点走向点时两段影子之和的变化趋势是(

A.先变长后变短B.先变短后变长

C.不变D.先变短后变长再变短

【答案】C

【解析】

连接DF,由题意易得四边形CDFE为矩形.DFGH,可得.ABCD,得出,设=a,DF=ba,b为常数),可得出,从而可以得出,结合可将DH用含a,b的式子表示出来,最后得出结果.

解:连接DF,已知CD=EFCDEG,EFEG,

∴四边形CDFE为矩形.

DFGH,

ABCD,∴.

=aDF=b,

,

GH=

a,b的长是定值不变,

∴当人从点走向点时两段影子之和不变.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P是正方形ABCD内一点,点P到点ABD的距离分别为1,2.△ADP沿点A旋转至ABP,连接PP,并延长APBC相交于点Q.

(1)求证:APP是等腰直角三角形;

(2)BPQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD内接于⊙OAC为对角线,∠ACB=∠ACD

1)如图1,求证:ABAD

2)如图2,点EAB弧上,DEAC于点F,连接BEBEDF,求证:DFDC

3)如图3,在(2)的条件下,点GBC弧上,连接DG,交CE于点H,连接GEGF,若DEBCEGGH5SDFG9,求BC边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知是等腰直角三角形,,点DBC的中点作正方形DEFG,使点AC分别在DGDE上,连接AEBG

试猜想线段BGAE的数量关系是______

将正方形DEFG绕点D逆时针方向旋转

判断中的结论是否仍然成立?请利用图2证明你的结论;

,当AE取最大值时,求AF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形的边长为1为射线上的动点(不与点重合),点关于直线的对称点为,连接.当是等腰三角形时,的值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣10),其部分图象如图所示,下列结论:

①4acb2

方程 的两个根是x1=1x2=3

③3a+c0

y0时,x的取值范围是﹣1≤x3

x0时,yx增大而增大

其中结论正确的个数是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以线段AC为对角线的四边形ABCD(它的四个顶点ABCD按顺时针方向排列),已知ABBCCDABC100°CAD40°,则∠BCD的度数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数yax2+bx+ca≠0)的图象的一部分,给出下列命题:①a+b+c0;②b2a;③方程ax2+bx+c0的两根分别为-31;④a2b+c≥0,其中正确的命题是(  )

A.①②③B.①④C.①③D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DRt△ABC斜边AB的中点,过点B、C分别作BE∥CD,CE∥BD.

(1)∠A=60°,AC=,求CD的长;

(2)求证:BC⊥DE.

查看答案和解析>>

同步练习册答案