【题目】某市为了处理污水需要铺设一条长为2000米的管道,实际施工时,×××××××,设原计划每天铺设管道米,则可列方程,根据此情景,题目中的“×××××××”表示所丢失的条件,这一条件为( )
A.每天比原计划多铺设10米,结果延期10天完成任务
B.每天比原计划少铺设10米,结果延期10天完成任务
C.每天比原计划少铺设10米,结果提前10天完成任务
D.每天比原计划多铺设10米,结果提前10天完成任务
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD边上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、QE
(1)求证:四边形BPEQ是菱形:
(2)若AB=6,F是AB中点,OF=4,求菱形BPEQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是
A.(6,0) B.(6,3) C.(6,5) D.(4,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在方格纸中,已知格点△ABC和格点O.
(1)画出△ABC关于点O对称的△A1B1C1;
(2)画出△ABC绕点O顺时针旋转90°的△A2B2C2 ;
(3)若以点A、O、C、D为顶点的四边形是平行四边形,则点D的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请在下列横线上注明理由.
如图,在中,点,,在边上,点在线段上,若,,点到和的距离相等.求证:点到和的距离相等.
证明:∵(已知),
∴(______),
∴(______),
∵(已知),
∴(______),
∵点到和的距离相等(已知),
∴是的角平分线(______),
∴(角平分线的定义),
∴(______),
即平分(角平分线的定义),
∴点到和的距离相等(______).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,B、C、D在同一直线上,△ABC和△ECD都是等边三角形,BE与AD相交于点M,
(1)求证:∠CBE=∠CAD;
(2)由(1)可知,图中的△EBC是由△DAC怎样变换(填一种变换)得到的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为﹣1,过点C(0,3)的直线y=﹣x+3与x轴交于点Q,点P是线段BC上的一个动点,PH⊥OB于点H.若PB=5t,且0<t<1.
(1)确定b,c的值;
(2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示);
(3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com