精英家教网 > 初中数学 > 题目详情

【题目】下列说法:①相等的角是对顶角;②若,则互补;③同一平面内的三条直线,若相交,则相交;④在同一平面内,两条不重合的直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.其中正确的有( )

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】

根据对顶角定义即可判断①根据补角的定义即可判断②,根据平行线的性质即可判断③,根据两直线的位置关系即可判断④根据对顶角的定义即可判断⑤

相等的角不一定是对顶角,比如:两直线平行,同位角相等∴①错误;

互补或互余是两个角之间的关系,,则互补错误,∴②错误;

同一平面内的三条直线a、b、c,若,ca相交,则cb相交,∴③正确;

同一平面内两条直线的位置关系可能是平行或相交,垂直是相交的特殊情况,∴④错误;

如图,

∵AB⊥CD

∴∠ABC=∠ABD,∠ABC∠ABD是有公共顶点并且相等的角,但不是对顶角,∴⑤错误;

即正确的个数是1个,

故选A。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题提出 平面内不在同一条直线上的三点确定一个面,那么平面内的四点(任意三点均不在同一直线上),能否在同一个面上呢?
初步思考
设不在同一条直线上的三点A、B、C确定的圆为⊙O.
(1)当C、D在线段AB的同侧时.
如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是
如图②,若点D在⊙O内,此时有∠ACB∠ADB;
如图③,若点D在⊙O外,此时有∠ACB∠ADB(填“=”、“>”、“<”)
由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:
类比学习
(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.
由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:
拓展延伸
(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线? 已知:如图,AB是⊙O的直径,点C在⊙O上,求作:CN⊥AB
作法:①连接CA、CB
②在CB上任取异于B、C的一点D,连接DA,DB;
③DA与CB相交于E点,延长AC、BD,交于F点;
④连接F、E并延长,交直径AB与M;
⑤连接D、M并延长,交⊙O于N,连接CN,则CN⊥AB.
请安上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底部G点为BC的中点,求矮建筑物的高CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,AD∥BC,∠C=90°,P是CD上一点,BH⊥AP于H,BH=BC=CD

(1)求证:∠ABP=45°;

(2)若BC=20,PC=12,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了响应市委和市政府绿色环保,节能减排的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:

进价(元/只)

售价(元/只)

甲种节能灯

30

40

甲种节能灯

35

50

(1)求幸福商场甲、乙两种节能灯各购进了多少只?

(2)全部售完100只节能灯后,商场共计获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点OABC的两边AB,AC所在直线的距离相等OB=OC.

(1)如图①若点O在边BC求证:AB=AC;

(2)如图②若点OABC的内部求证:AB=AC;

(3)若点OABC的外部,AB=AC成立吗?请画图表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.
(1)求a的值;
(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;
(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 已知点A、点B是直线上的两点,AB =12厘米,点C在线段AB上,且AC=8厘米点P、点Q是直线上的两个动点,点P的速度为1厘米秒,点Q的速度为2厘米/秒PQ分别从点C、点B同时出发,在直线上运动,则经过 秒时线段PQ的长为5厘米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题
(1)将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是 , ∠CAC′=°.

(2)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.

(3)如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,说明理由.

查看答案和解析>>

同步练习册答案