精英家教网 > 初中数学 > 题目详情

【题目】如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底部G点为BC的中点,求矮建筑物的高CD.

【答案】
【解析】
解:过点D作DF⊥AF于点F,
∵点G是BC中点,EG∥AB,
∴EG是△ABC的中位线,
∴AB=2EG=30米,
在Rt△ABC中,∵∠CAB=30°,
∴BC=ABtan∠BAC=30× =10米.
在Rt△AFD中,∵AF=BC=10米,
∴FD=AFtanβ=10× =10米,
∴CD=AB﹣FD=30﹣10=20米.

【考点精析】关于本题考查的关于仰角俯角问题,需要了解仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示是一个纸杯,它的母线延长后形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯开口圆的直径为6cm,下底面直径为4cm,母线长EF=9cm,求扇形OAB的圆心角及这个纸杯的表面积.(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AC为对角线,点EAC上一点,连接EBED.

(1)求证:△BEC≌△DEC

(2)延长BEAD于点F,当∠BED120°时,求∠EFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”. 例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.

请根据上述规定解答下列问题:

(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;

(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣4,﹣2,1,8,且任意相邻四个台阶上数的和都相等.

尝试:(1)求前4个台阶上数的和是多少?

(2)求第5个台阶上的数x是多少?

应用求从下到上39个台阶上数的和.

发现试用含kk为正整数)的代数式表示出数“1”所在的台阶数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:数轴上点A表示的数是8,点B表示的数是﹣4.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左运动.P,Q两点同时出发.

(1)经过多长时间,点P位于点Q左侧2个单位长度?

(2)在点P运动的过程中,若点MAP的中点,点NBP的中点,求线段MN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是(
A.3cm2
B.4cm2
C.5cm2
D.6cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:①相等的角是对顶角;②若,则互补;③同一平面内的三条直线,若相交,则相交;④在同一平面内,两条不重合的直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.其中正确的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠A=90° DAB边上一点,且DB=DC,过BC上一点P(不包括BC二点)作PEAB,垂足为点E PFCD,垂足为点F,已知ADDB=14BC= ,求PE+PF的长.

查看答案和解析>>

同步练习册答案