【题目】小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,如图是他们投标成绩的统计图.
(1)根据图中信息填写下表
平均数 | 中位数 | 众数 | |
小亮 | 7 | ||
小莹 | 7 | 9 |
(2)分别用平均数和中位数解释谁的成绩比较好.
【答案】解:(1)填表如下:
平均数 | 中位数 | 众数 | |
小亮 | 7 | 7 | 7 |
小莹 | 7 | 7.5 | 9 |
(2)平均数相等说明:两人整体水平相当,成绩一样好;
小莹的中位数大说明:小莹的成绩比小亮好。
【解析】
试题分析:(1)根据条形统计图找出小亮与小莹10次投中的环数,求出平均数,中位数,以及众数即可:
根据题意得:小亮的环数为:9,5,7,8,7,6,8,6,7,7,
平均数为(9+5+7+8+7+6+8+6+7+7)=7(环),中位数为7,众数为7;
小莹的环数为:3,4,6,9,5,7,8,9,9,10,
平均数为(3+4+6+9+5+7+8+9+9+10)=7(环),中位数为7.5,众数为9。
(2)根据两人的中位数相同,可得出谁的平均数高,谁的成绩好。
科目:初中数学 来源: 题型:
【题目】已知△ABC中,∠A=50°.
(1)如图①,∠ABC、∠ACB的角平分线交于点O,则∠BOC= °.
(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C= °.
(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1(内部有n﹣1个点),求∠BOn﹣1C(用n的代数式表示).
(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1,若∠BOn﹣1C=60°,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一组数据中,随机抽取50个作为样本进行统计,在频数分布表中,54.5~57.5这一组的频率是0.12,那么这个样本中的数据落在54.5~57.5之间的有__个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索发现:
如图1,已知直线l1∥l2 , 且l3和l1、l2分别相交于A、B两点,l4和l1、l2分别交于C、D两点,∠ACP记作∠1,∠BDP记作∠2,∠CPD记作∠3.点P在线段AB上.
(1)若∠1=20°,∠2=30°,请你求出∠3的度数.
(2)请你根据上述问题,请你找出图1中∠1、∠2、∠3之间的数量关系,并直接写出你的结论.
(3)应用(2)中的结论解答下列问题:如图2,点A在B的北偏东 40°的方向上,在C的北偏西45°的方向上,请你根据上述结论直接写出∠BAC的度数.
拓展延伸:
(4)如果点P在直线l3上且在A、B两点外侧运动时,其他条件不变,试探究∠1、∠2、∠3之间的关系(点P和A、B两点不重合),写出你的结论并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
(1)请填写下表:
平均数 | 方差 | 中位数 | 命中9环及以上的次数 | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 |
(2)请从下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看;
②从平均数和中位数相结合看(分析谁的成绩好些);
③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);
④从折线图上两人射击命中环数的走势看(分析谁更有潜力).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1、s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com