20£®Èçͼ£¬Ö±Ïßy=-$\frac{1}{2}$x+b½»xÖáÓÚµãA£¬½»Ö±Ïßy=$\frac{3}{2}$xÓÚµãB£¨2£¬m£©£¬¾ØÐÎCDEFµÄ±ßDCÔÚxÖáÉÏ£¬DÔÚCµÄ×ó²à£¬EFÔÚxÖáµÄÉÏ·½£¬DC=2£¬DE=4£®µ±µãCµÄ×ø±êΪ£¨-2£¬0£©Ê±£¬¾ØÐÎCDEF¿ªÊ¼ÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÑØxÖáÏòÓÒÔ˶¯£¬Ô˶¯Ê±¼äΪtÃ룮
£¨1£©Çób£¬mµÄÖµ£»
£¨2£©¾ØÐÎCDEFÔ˶¯tÃëʱ£¬Ö±½Óд³öC¡¢DÁ½µãµÄ×ø±ê£¨Óú¬tµÄ´úÊýʽ±íʾ£©£»
£¨3£©µ±µãBÔÚ¾ØÐÎCDEFµÄÒ»±ßÉÏʱ£¬ÇótµÄÖµ£®

·ÖÎö £¨1£©°ÑB£¨2£¬m£©´úÈëy=$\frac{3}{2}x$¼´¿ÉÇóµÃmµÄÖµ£¬È»ºó´úÈëy=-$\frac{1}{2}$x+b¼´¿ÉÇóµÃbµÄÖµ£»
£¨2£©¸ù¾ÝCµÄ×ø±êºÍCDµÄ³¤£¬ÇóµÃDµÄ×ø±ê£¬ÔòÔ˶¯Ê±¼äλt£¬ÔòÏòÓÒÔ˶¯¾àÀëÊÇ2t£¬ÔòC¡¢DÁ½µãµÄ×ø±ê¼´¿ÉÇó½â£»
£¨3£©µãBÔÚ¾ØÐÎCDEFµÄÒ»±ßÉÏ£¬Ôò¿ÉÄÜÔÚCFÉÏ»òDEÉÏ£¬ÔÚCFÉÏʱ£¬BµÄºá×ø±êµÈÓÚCµÄºá×ø±ê£¬¼´¿ÉÁз½³ÌÇó½â£¬Í¬Àíµ±BÔÚDEÉÏʱ£¬BµÄºá×ø±êµÈÓÚDµÄºá×ø±ê£¬¼´¿ÉÇóµÃt£®

½â´ð ½â£º£¨1£©°ÑB£¨2£¬m£©´úÈëy=$\frac{3}{2}x$µÃ£ºm=$\frac{3}{2}¡Á2$=3£¬
ÔòBµÄ×ø±êÊÇ£¨2£¬3£©£¬´úÈëy=-$\frac{1}{2}$x+bµÃ£º-1+b=3£¬½âµÃ£ºb=4£»
£¨2£©¡ßDC=2£¬µãCµÄ×ø±êΪ£¨-2£¬0£©£¬ÔòDµÄ×ø±êÊÇ£¨-4£¬0£©£®
¡à¾ØÐÎCDEFÔ˶¯tÃëʱ£¬CµÄ×ø±êÊÇ£¨-2+2t£¬0£©¡¢DµãµÄ×ø±ê£¨-4+2t£¬0£©£»
£¨3£©µ±BÔÚCFÉÏʱ£¬-2+2t=2£¬½âµÃt=2£»
µ±BÔÚDEÉÏʱ£¬-4+2t=2£¬½âµÃt=3£®
ÔòtµÄÖµÊÇ2»ò3£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýÓëͼÐÎµÄÆ½ÒÆ£¬ÕýÈ·Àí½âBÔÚCFÉÏʱ£¬BµÄºá×ø±êµÈÓÚCµÄºá×ø±ê£¬×ª»¯Îª·½³ÌÇó½âÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÓÐ10Ãû²ËÅ©£¬Ã¿ÈË¿ÉÖÖÇÑ×Ó3Ķ»òÀ±½·2Ķ£¬ÒÑÖªÇÑ×ÓÿĶ¿ÉÊÕÈë0.5ÍòÔª£¬À±½·Ã¿Ä¶¿ÉÊÕÈë0.8ÍòÔª£¬ÒªÊ¹×ÜÊÕÈë²»µÍÓÚ15.6ÍòÔª£¬Ôò×î¶àÖ»Äܰ²ÅÅ4ÈËÖÖÇÑ×Ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖª¹ØÓÚxµÄ²»µÈʽ×é$\left\{\begin{array}{l}4x-2£¾3x\\ x£¼a+7\end{array}\right.$ÓÐÇÒÖ»ÓÐÈý¸öÕûÊý½â£¬ÔòaµÄȡֵ·¶Î§ÊÇ-2£¼a¡Ü-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ö±Ïßy=kx+b-1²»¾­¹ýµÚ¶þÏóÏÞ£¬Ôòk£¬bµÄÇé¿öÊÇ£¨¡¡¡¡£©
A£®k£¾0£¬b£¾1B£®k£¾0£¬b¡Ü1C£®k£¼0£¬b£¾1D£®k£¼0£¬b¡Ý1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¾ØÐεÄÁ½Áڱ߳¤µÄ²îΪ1£¬¶Ô½ÇÏß³¤Îª5£¬Ôò¾ØÐεÄÃæ»ýΪ12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬ÔÚ?ABCDÖУ¬OÊǶԽÇÏßBDµÄÖе㣬ÇÒAB¡ÙAD£¬¹ýµãO×÷OE¡ÍBDÓÚµãE£¬Èô?ABCDµÄÖܳ¤Îª20£¬Ôò¡÷CDEµÄÖܳ¤Îª10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ÆË㣺
£¨1£©|-3|-£¨$\sqrt{3}$-1£©0+£¨$\frac{1}{2}$£©-2            
£¨2£©£¨2a-b£©2-£¨2a-b£©£¨2a+b£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚÍ¬Ò»Æ½ÃæÖ±½Ç×ø±êϵÖУ¬º¯Êýy=ax2+bxÓëy=bx+aµÄͼÏó¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼×¡¢ÒÒÁ½ÃûսʿÔÚÏàͬÌõ¼þϸ÷Éä°Ð6´Î£¬Ã¿´ÎÃüÖеĻ·Êý·Ö±ðÊÇ£º£¨µ¥Î»£º»·£©
¼×£º4£¬9£¬10£¬7£¬8£¬10£»ÒÒ£º8£¬9£¬9£¬8£¬6£¬8£®
£¨1£©·Ö±ð¼ÆËã¼×¡¢ÒÒÁ½ÃûսʿµÄƽ¾ùÊýºÍ·½²î£»
£¨2£©ÄÄÃûսʿµÄ³É¼¨±È½ÏÎȶ¨£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸