【题目】如图,组成这个几何体的小正方体的块数为,则的所有可能值为________.
【答案】8,9,10,11
【解析】
由俯视图可得该组合几何体有3列,2行,以及最底层正方体的个数及摆放形状,由主视图结合俯视图可得从左边数第二列第二层最少有1个正方体,最多有2个正方体,第3列第2层,最少有1个正方体,最多有2个正方体,第3层最少有1个正方体,最多有2个正方体,分别相加得到组成组合几何体的最少个数及最多个数即可得到n的可能的值.
俯视图有5个正方形,
则最底层有5个正方体,
由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;
由主视图可得第2层最多有4个正方体,第3层最多有2个正方体;
故n的值可能为:1+4+3=8,1+5+3=9,1+6+3=10,1+4+4=9,1+5+4=10,1+6+4=11,
故答案为:8,9,10,11.
科目:初中数学 来源: 题型:
【题目】在2018年韶关市开展的“善美韶关情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是反比例函数上第一象限上一个动点,点A、点B为坐标轴上的点,A(0,k),B(k,0).已知△OAB的面积为.
(1)求k的值;
(2)连接PA、PB、AB,设△PAB的面积为S,点P的横坐标为t.请直接写出S与t的函数关系式;
(3)阅读下面的材料回答问题:
当a>0时,
∵≥0,∴≥2,即≥2
由此可知:当=0时,即a=1时,取得最小值2.
问题:请你根据上述材料探索(2)中△PAB的面积S有没有最小值?若有,请直接写出S的最小值;若没有,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点N(0,6),点M在x轴负半轴上,ON=3OM.A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.
(1)写出点M的坐标;
(2)求直线MN的表达式;
(3)若点A的横坐标为-1,求矩形ABOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.
(1)证明:△BCE≌△CAD;
(2)若AD=15cm,BE=8cm,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段,使BA=BC,连接AC.
(1)如图1,求C点坐标;
(2)如图2,若P点从A点出发,沿x轴向左平移,连接BP,作等腰直角三角形△BPQ,连接CQ.求证:PA=CQ.
(3)在(2)的条件下,若C、P、Q三点共线,求此时P点坐标及∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(十九),用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?
(A) 5 (B) 6 (C) 7 (D) 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场计划销售甲、乙两种产品共件,每销售件甲产品可获得利润万元, 每销售件乙产品可获得利润万元,设该商场销售了甲产品(件),销售甲、乙两种产品获得的总利润为(万元).
(1)求与之间的函数表达式;
(2)若每件甲产品成本为万元,每件乙产品成本为万元,受商场资金影响,该商场能提供的进货资金至多为万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com