分析 (1)根据SAS即可证明.
(2)由△BCD≌△ACE,推出∠CBD=∠CAE,由∠BGC=∠AGE,即可推出∠AFB=∠ACB=90°.
(3)结论:∠CFE=∠CAB,过C作CH⊥AE于H,CI⊥BF于I,由△BCD≌△ACE,推出AE=BD,S△ACE=S△BCD,推出CH=CI,推出CF平分∠BFH,
推出,∠CFE=45°,由△ABC是等腰直角三角形,推出∠CAB=45°,即可证明.
解答 证明:(1)在△BCD与△ACE中,
$\left\{\begin{array}{l}{BC=AC}\\{∠BCD=∠ACE}\\{DC=CE}\end{array}\right.$,
∴△BCD≌△ACE;
(2)∵△BCD≌△ACE,
∴∠CBD=∠CAE,
∵∠BGC=∠AGE,
∴∠AFB=∠ACB=90°,
∴BF⊥AE;
(3)结论:∠CFE=∠CAB,
理由:过C作CH⊥AE于H,CI⊥BF于I,![]()
∵△BCD≌△ACE,
∴AE=BD,S△ACE=S△BCD,
∴CH=CI,
∴CF平分∠BFH,
∵BF⊥AE,
∴∠BFH=90°,∠CFE=45°,
∵BC⊥CA,BC=CA,
∴△ABC是等腰直角三角形,
∴∠CAB=45°,
∴∠CFE=∠CAB.
故答案为=.
点评 本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
| 种子个数n | 1000 | 1500 | 2500 | 4000 | 8000 | 15000 | 20000 | 30000 |
| 发芽种子个数m | 899 | 1365 | 2245 | 3644 | 7272 | 13680 | 18160 | 27300 |
| 发芽种子频率$\frac{m}{n}$ | 0.899 | 0.910 | 0.898 | 0.911 | 0.909 | 0.912 | 0.908 | 0.910 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com